Влияние совместного легирования добавками СеF₃ и EuF₃ пленкообразующего материала фторида магния на оптические и эксплуатационные свойства покрытий

Е. В. Тимухин, В. Ф. Зинченко, О. В. Мозговая, Б. А. Горштейн

Рентгеновским фазовым анализом (РФА) и ИК-спектроскопией установлен факт удаления кислородсодержащих примесей (MgO) в пленкообразующем материале (ПОМ), фториде магния — под действием добавок на основе системы CeF₃ – EuF₃. Тонкопленочные покрытия, полученные термическим испарением MgF₂, легированного добавками CeF₃ – EuF₃, обладают повышенной механической прочностью при незначительном изменении показателя преломления и коэффициента рассеяния по сравнению со стандартным образцом MgF₂.

Ключевые слова: пленкообразующие материалы, фторид магния, легирующая добавка, фториды лантанидов, тонкопленочные покрытия.

The fact of removal of oxygen-containing impurities (MgO) in the magnesium fluoride film-forming material under the influence of additives on the basis of $CeF_3 - EuF_3$ system was established by XRD analysis and IR spectroscopy. Thin-film coatings obtained by thermal evaporation of MgF₂, doped with $CeF_3 - EuF_3$ additives, reveal high mechanical durability and refractive index and scattering coefficient slightly changed compared with the standard specimen of MgF₂.

Keywords: film-forming materials, magnesium fluoride, alloying additives, lanthanide fluorides, thin-film coatings.

Введение

Формирование интерференционных покрытий в процессе производства оптических фильтров и зеркал осуществляют различными физическими (physical vapour deposition — PVD) или химическими (chemical vapour deposition — CVD) методами [1-6]. Однако, основным и самым распространенным способом остается термическое испарение в вакууме как вариант PVD-метода [1 – 3]. В качестве исходных ПОМ, обладающих низкими показателями преломления и невысокими коэффициентами рассеяния, чаще всего применяют фториды некоторых металлов, основной из которых — фторид магния (MgF₂) [3]. Условия испарения (рабочая температура свыше 1200°С, остаточное давление 3·10-3 Па) способствуют частичному разложению фторидов, что приводит к образованию нестехиометрического по составу

покрытия, с недостаточно высокими оптическими и эксплуатационными характеристиками. Кроме того, фторид магния в той или иной степени содержит оксидную примесь (чаще всего в виде оксида магния, MgO). В процессе испарения эта примесь взаимодействует с материалами испарителя (Та, Мо), создавая дефекты в покрытии, увеличивая тем самым коэффициент рассеяния и ухудшая его механическую прочность. Проблема диспропорционирования фторидов решается нанесением покрытия во фторирующей атмосфере (CF₄, F₂) [4], однако такое решение требует существенной модификации испарительной установки.

Альтернативное решение — применение легирующих добавок фторидов лантанидов (LnF₃). Они могут самостоятельно использоваться в качестве ПОМ, причем, свойства полученных на их основе покрытий варьируют в широком интервале [3, 5, 6]. Ранее [5] установлено положительное влияние легирующих добавок LnF_3 на оптические и эксплуатационные свойства покрытий на основе MgF₂. Основной механизм легирования заключается в обменной реакции [5, 7]:

$$MgO + LnF_3 \rightarrow MgF_2 + LnOF.$$
(1)

Однако, наличие оксофторидов, особенно при использовании EuF_3 в качестве легирующей добавки, может отрицательно сказаться на технологичности процесса испарения, что связано с возможностью протекания процесса частичного восстановления в условиях глубокого вакуума и высоких температур [8,9]:

 $2 \operatorname{EuF}_3 + 2 \operatorname{EuOF} \to 2 \operatorname{Eu}_2 \operatorname{OF}_4 \to 4 \operatorname{EuF}_2 + \operatorname{O}_2 \uparrow. (2)$

Ранее установлен факт существенного улучшения оптических и эксплуатационных свойств покрытий, полученных испарением системы на основе $CeF_3 - EuF_3$ [7], по сравнению с системами из индивидуальных фторидов. Это объясняется окислительно-восстановительным взаимодействием в данной системе как в процессе получениия ПОМ, так и при его термическом испарении в вакууме:

 $EuF_3 + CeF_3 \rightarrow [EuCeF_6] \rightarrow EuF_2 + CeF_4^{\uparrow}.$ (3) Показана также возможность фторирования MgO

под действием системы CeF_3 – EuF_3 в частности [10].

Цель работы — улучшить оптические и эксплуатационные характеристики тонкопленочных покрытий на основе MgF_2 путем устранения кислородсодержащих примесей с помощью легирующей добавки CeF₃-EuF₃.

Экспериментальная часть

В качестве исходных компонентов легирующей добавки взяты фториды CeF₃ и EuF₃ производства СНВП "Новые материалы и технологи" (г. Одесса, Украина), которые по данным РФА и химического анализа содержали фазы только основных веществ. Также для изучения легирующего действия в качестве исходного фторида магния взят образец производства завода "Красный химик" (г. Санкт-Петербург, РФ), соответствующий ТУ ВЗ-610-84, который, согласно данным РФА и ИК-спектроскопии (рис. 1), содержал значительное количество кислородсодержащих примесей (MgO, Mg(OH)₂, MgF₂·xH₂O и, в меньшей степени, [MgOH]₂CO₃). Содержание MgO в прокаленном образце MgF_2 оценено на уровне не ниже 10 масс. %. Следует отметить, что покрытия из данного материала получить не удается, следовательно, образец невозможно использовать в качестве исходного ПОМ без предварительной обработки.

Исходя из содержания MgO, рассчитаны составы композиций, состоящих из исходного MgF_2 и леги-

Рис. 1. ИК-спектры в режиме пропускания *Т* исходного фторида магния.

рующих добавок CeF₃-EuF₃, молярное соотношение компонентов которых составляло 1:1 и 1:3, а содержание легирующей добавки — 21 и 38 масс. %, соответственно. Фторирование примеси MgO в указанных композициях предположительно может быть описано следующими схемами:

 $2 \operatorname{MgO} + \operatorname{CeF}_3 + \operatorname{EuF}_3 \rightarrow 2 \operatorname{MgF}_2 + \operatorname{CeO}_2 + \operatorname{EuF}_2, (4)$ $6 \operatorname{MgO} + 2 \operatorname{CeF}_3 + 6 \operatorname{EuF}_3 \rightarrow 6 \operatorname{MgF}_2 +$ $+ 2 \operatorname{CeO}_2 + 6 \operatorname{EuF}_2 + \operatorname{O}_2 \uparrow.$ (5)

С целью экспериментальной проверки механизма легирования образцы смешивали, перетирали в агатовой ступке, прессовали в таблетки диаметром 20 мм и высотой 10 – 15 мм и спекали в среде инертного газа (Не) на протяжении 5 ч при температуре 900°С.

Фазовый состав продуктов идентифицировали методом РФА на автоматизированном рентгеновском аппарате ДРОН-ЗУМ. Дифракционные спектры получали в непрерывном режиме съемки с применением Си K_{α} -излучения.

ИК-спектры в режиме пропускания *T* снимали на спектрофотометре FTIR-8400S (Shimadzu) с использованием образцов исследуемых материалов, запрессованных в матрицу KBr высокой чистоты.

Тонкопленочные покрытия соединений фторидов наносили на нагретые до 200°С подложки из оптического стекла К8 методом термического испарения спеченных таблеток композитов в вакуумной установке ВУ-1А при остаточном вакууме $3 \cdot 10^{-3}$ Па. Испарение таблеток проводили резистивным путем из молибденовых лодочек-нагревателей (ток нагрева до 120 А) со скоростью нанесения 25 - 30 нм/мин. Оптическая толщина покрытий *nd*, где *n* — показатель преломления, *d* — физическая толщина, составляла 1,2 мкм. Для определения показателя преломления покрытия из фторидов наносили на клинообразную (угол клина $\approx 12^\circ$) пластину из тяжелого стекла марки ТФ5 с показателем преломления n = 1,73 - 1,75. Определение *n* покрытия проводили на микроспектрофотометре МСФУ путем измерения коэффициента отражения (*R*) от клинообразной пластины, измеряя экстремальные значения *R* на интерференционной картине. Формула для расчета показателя преломления слоя имеет вид:

$$n_{\rm c} = \sqrt{n_{\rm B} n_{\rm II} \frac{1 + \sqrt{R_{\rm min}}}{1 - \sqrt{R_{\rm min}}}},\tag{6}$$

где $n_{\rm c}, n_{\rm B}, n_{\rm m}$ — показатели преломления, соответственно, слоя, среды (воздух) и материала подложки, $R_{\rm min}$ — величина отражения в точке минимума (при $n_{\rm c} < n_{\rm m}$, что имеет место для фторидного покрытия).

Коэффициент рассеяния измеряли для покрытия, нанесенного на подложку из кварцевого оптического стекла, которое было подвергнуто глубокому шлифованию и полированию. Измерения проводили на лазерном стенде с применением He – Ne-лазера ($\lambda = 682$ нм) путем определения относительного диффузного отражения от подложки в сфере, покрытой MgO.

Эксплуатационные свойства покрытий, а именно, адгезию к подложке, механическую прочность, термическую и климатическую стойкость определяли по стандартным методикам. Адгезию к подложкекачественным путем, оценивая визуально состояние покрытия после его нанесения и последующего протирания его салфеткой со спиртом. Механическую прочность покрытий — на устройстве СМ-55 методом истирания покрытия резиновым стержнем, обернутым батистовой тканью, по количеству оборотов до разрушения покрытия (до появления кольцеобразной царапины). Климатическую стойкость покрытий — в климатической камере при относительной влажности 98 % и температуре 40°С. Термическую стойкость оценивали как способность выдерживать термоудар в диапазоне перепада температур ±60°С за время выдержки 3 – 5 минут путем качественной оценки состояния покрытия.

Результаты и обсуждение

Термическая обработка исходного MgF_2 существенно не повлияла на его фазовый состав (табл. 1), в образцах же системы MgF_2 – CeF_3 – EuF_3 наблюдается переход кислородсодержащей фазы примеси MgO в фазу оксофторида европия (III) (Eu_2OF_4), подтверждая тем самым схему взаимодействия, предложенную в работе [8]:

$$MgO + 2 EuF_3 \rightarrow MgF_2 + Eu_2OF_4.$$
⁽⁷⁾

Рис. 2. ИК-спектры в режиме пропускания *T* образцов, прошедших термообработку в инертной атмосфере (Не) при 900°С: *1* – образец 1; *2* – образец 2; *3* – образец 3 (табл. 1).

Таблица 1

Фазовый состав системы $MgF_2 - CeF_3 - EuF_3$ после спекания при 900°С, He, 5 ч

	Содержание	Фазовый		
Образец	$CeF_3 - EuF_3$	состав после		
	в композите, масс. %	термообработки		
1	0	MgF ₂ , MgO		
2	21 (1:1)	MgF ₂ , Eu ₂ OF ₄ , CeF ₃		
3	38 (1:3)	MgF ₂ , Eu ₂ OF ₄ , EuF ₃ , CeF ₃		

Подтверждением существенного уменьшения содержания (вплоть до полного исчезновения) MgO в образцах ПОМ после термообработки компонентов служат ИК-спектры пропускания, на которых наблюдается батохромное смещение края поглощения (рис. 2). Это, несомненно, связанно с уменьшением интенсивности колебаний за счет замены связей Mg – О на связи Mg – F меньшей жесткости. При этом практически полностью исчезают полосы колебаний HO- и CO₃-групп как в образце ПОМ MgF₂, так и в композитах с легирующими добавками, что указывает на их термическое разложение. Кроме того, легирование способствует повышению прозрачности образцов в ИК-диапазоне.

При исследовании оптических и эксплуатационных свойств покрытий, полученных в результате термического испарения в вакууме легированных образцов ПОМ, прошедших предварительную термообработку (рис. 3, рис. 4, табл. 2) установлено увеличение показателя преломления по сравнению со стандартным материалом MgF₂ (производства СНПП "Новые материалы и технологии", г. Одесса, Украина). Как следует из сопоставления спектральных зависимостей $R = f(\lambda)$, образец 3 с большим содержанием легирующей добавки (CeF₃ – EuF₃, 1:3), видимо, обладает большим показателем преломления

		-	_		- 2 0	0
N⁰	Толщина	Толщина	Показатель	Оптическая	Коэффициент	Механическая
образца	оптическая,	физическая,	преломления	неоднородность,	рассеяния	прочность Н _m ,
(исх.)	НМ	НМ	$n_{\lambda = 500, \text{ HM}}$	%	σ, %	оборотов
2	1748	1209	1,46	1,36	0,03 - 0,04	18 000
3	1834	1206	1,52	4,50	0,05 - 0,07	17 000
4 *	стандартная	стандартная	1,38	стандартная	0,04 - 0,06	2 500

Оптические и эксплуатационные свойства покрытий на основе системы MgF₂ - CeF₃ - EuF₃

* — стандартный MgF₂

Рис. 3. Спектральная характеристика коэффициента отражения *R* от клиновидной пластины из стекла ТФ-5 со слоем покрытий, нанесенных из образцов: 1 – образец 2; 2 – образец 3 (табл. 1).

в покрытии (большая амплитуда "синусоиды"). Это подтверждается данными проведенных расчетов (табл. 2).

При этом оптическая неоднородность, то есть градиент показателя преломления по толщине для указанного покрытия значительно выше по сравнению с покрытием, полученным из образца 2. В сочетании с большими абсолютными значениями n это говорит о более существенном влиянии легирующей добавки, в первую очередь, ее составляющей EuF₃, на формирование свойств покрытий MgF₂. Следует отметить, что дисперсия показателя преломления (рис. 4) покрытия на основе образца 2 заметно выше, что пока не поддается разумному объяснению.

В целом, однако, его использование, с учетом величины *n* и его оптической неоднородности, выглядит предпочтительнее. Обращает на себя внимание также резкое увеличение механической прочности покрытий из композитов $MgF_2 - CeF_3 - EuF_3$ по сравнению со стандартным покрытием, что, возможно связано с наноструктурированием в слое, содержащем несколько компонентов [11]. При этом светопотери на рассеяние (σ) остаются на практически том же уровне или даже несколько уменьшаются (табл. 2).

Выводы

 Установлен факт удаления кислородсодержащих примесей (MgO) в пленкообразующем материале — фториде магния — под действием легирующих добавок на основе системы CeF₃ – EuF₃.

2. Тонкопленочные покрытия, полученные PVDметодом из MgF_2 , содержат примесь легирующей добавки, что приводит к увеличению показателя преломления по сравнению со стандартом. Наблюдается резкое увеличение механической прочности (до группы 0 и выше) покрытий под влиянием легирующих примесей.

3. Добавка $CeF_3 - EuF_3$ (1:1) к стандартному ПОМ MgF_2 при неболыших содержаниях MgO является перспективной для создания покрытий с высокими оптическими и эксплуатационными характеристи-ками для интерференционной оптики.

Литература

- Springer Handbook of Lasers and Optics. F. Träger (Ed.) NY: Springer Sciense + Business Media, 2007, 396 p.
- Окатов М.А., Антонов Э.А., Байгожин А. и др. Справочник технолога-оптика. Под ред. М.А. Окатова.
 2-е изд., перераб. и доп. СПб.: Политехника, 2004, 679 с.
- Handbook of Infrared Optical Materials. P. Klocek (Ed.) NY. Basel. Hong Kong.: Marcel Dekker Inc., 1991, 613 p.
- Bo-Huei Liao, Ming-Chung Liu and Cheng-Chung Lee. Process for deposition of AlF₃ thin films. Applied Optics, 2008, v. 47, no. 13, p. 41 – 45.
- Zinchenko V.F. Fluorides of some s-, p-, d-, and f-metals as perspective materials for interference optics: present status and development. Journal of Fluorine Chemistry, 2010, v. 131, iss. 2, p. 159 – 164.
- Зінченко В.Ф., Соболь В.П., Кочерба Г.І., Тімухін Є.В. Оптичні та експлуатаційні властивості тонкоплівкових систем інтерференційної оптики (огляд). Фізика і хімія твердого тіла, 2007, т. 8, № 36 с. 401 – 415.
- Зінченко В.Ф., Єфрюшина Н.П., Єрьомін О.Г. Марків В.Я., Стоянова І.В., Антонович В.П., Мозкова О.В.,

Белявіна Н.М. Структура і оптичні властивості фаз у системі EuF₃ – CeF₃, Фізика і хімія твердого тіла, 2004, т. 5, № 3, с. 525 – 532.

- Тимухин Е.В., Зинченко В.Ф., Еремин О.Г., Ковалевская И.П., Топилова З.М. Взаимодействие, состав и оптические свойства фаз системы MgF₂(MgO) – EuF₃. Журн. неорган. химии, 2007, т. 52, № 6, с. 999 – 1004.
- Зінченко В.Ф., Кочерба Г.І., Тімухін Є.В., Соболь В.П., Мозкова О.В., Горштейн Б.А. Розробка і властивості фторидних матеріалів і покриттів для оптичних систем, що функціонують в екстремальних умовах. Вісник Українського матеріалознавчого товариства, 2009, № 1 (2), с. 66 – 86.
- Быков А.А., Зинченко В.Ф., Тимухин Е.В. М Исследование взаимодействия в системе MgO – CeF₃ – EuF₃. Укр. хим. журнал., 2010, т. 76, № 1, с. 16 – 19.
- Зінченко В. Ф., Кочерба Г. І., Соболь В. П., Мозкова О. В., Марків В. Я., Бєлявіна Н. М. Особливості структури та оптичних й експлуатаційних властивостей тонкоплівкових покриттів на основі оксидів, фторидів та халькогенідів металів. Фізика і хімія твердого тіла, 2010, т. 11, № 1, с. 204 – 210.

Тимухин Егор Владимирович — Физико-химический институт им. A.B. Богатского НАН Украины (г. Odecca), кандидат химических наук, научный сотрудник. Специалист в области неорганической химии фторидных материалов. E-mail: timukhin@ukr.net.

Зинченко Виктор Федосеевич — Физико-химический институт им. А.В. Богатского НАН Украины (г. Одесса), доктор химических наук, заведующий отделом химии функциональных неорганических материалов. Специалист в области неорганической химии и химии твердого тела. E-mail: vfzinchenko@ukr.net.

Мозговая Ольга Владимировна — Казенное предприятие специального приборостроения "Арсенал" Национального космического агентства Украины (г. Киев), начальник лаборатории. Специалист в области создания интерференционной оптики. E-mail: borisgor@i.com.ua.

Горитейн Борис Аврамович — Казенное предприятие специального приборостроения "Арсенал" Национального космического агенства Украины (г. Киев), начальник производства. Специалист в области расчета оптических систем. E-mail: borisgor@i.com.ua.