1. Senthilnathan N., Raja Annamalai A., Venkatachalam G. Sintering of tungsten and tungsten heavy alloys of W–Ni–Fe and W–Ni–Cu: A review. Transactions of the Indian Institute of Metals, 2017, v. 70, no. 5, pp. 1161 – 1176. https://doi.org/10.1007/s12666-016-0936-2
2. Поварова К.Б., Макаров П.В., Ратнер А.Д., Заварзина Е.К., Волков К.В. Тяжелые сплавы типа ВНЖ-90. I. Влияние легирования и режимов получения порошков вольфрама на их строение, микроструктуру и свойства спеченных сплавов. Металлы, 2002, № 4, с. 39 – 48. / Povarova K.B., Makarov P.V., Ratner A.D., Zavarzina E.K., Volkov, K.V. VNZh-90-type heavy alloys. I. Effect of alloying and the conditions of fabricating tungsten powders on their structure and the properties of sintered alloys. Russian Metallurgy (Metally), 2002, no. 4, pp. 346 – 353.
3. Huang L., Jiang L., Topping T.D., Dai C., Wang X., Carpenter R., Haines C., Schoenung J.M. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure. Acta Materialia, 2017, v. 122, pp. 19 – 31. https://doi.org/10.1016/j.actamat.2016.09.034
4. Zhang Y., Huang Y., Liu W., Ma Y., Liu J., Liang C. Effect of tungsten tantalum pre-alloying on the sintering structure of 90(W-Ta)-Ni-Fe alloy. Journal of Alloys and Compounds, 2022, v. 891, art. 161881. https://doi.org/10.1016/j.jallcom.2021.161881
5. Chen C., Qian S., Liu R., Wang S., Liao B., Zhong Z., Cao L., Coenen J.W., Wu Y. The microstructure and tensile properties of W/Ti multilayer composites prepared by spark plasma sintering. Journal of Alloys and Compounds, 2019, v. 780, pp. 116 – 130. https://doi.org/10.1016/j.jallcom.2018.11.346
6. Philipps V. Tungsten as material for plasma-facing components in fusion devices. Journal of Nuclear Materials, 2011, v. 415, pp. S2 – S9. https://doi.org/10.1016/j.jnucmat.2011.01.110
7. Zinkle S.J., Busby J.T. Structural materials for fission & fusion energy. Materials Today, 2009, v. 12, pp. 12 – 19. https://doi.org/10.1016/S1369-7021(09)70294-9
8. Yoshida N. Review of recent works in development and evaluation of high-Z plasma facing materials. Journal of Nuclear Materials, 1999, v. 266 – 269, pp. 197 – 206. https://doi.org/10.1016/S0022-3115(98)00817-4
9. Li C., German R.M. The properties of tungsten processed by chemically activated sintering. Metallurgical and Materials Transactions A, 1983, v. 14, pp. 2031 – 2041. https://doi.org/10.1007/BF02662370
10. Johnson J.L. Sintering of refractory metals. Sintering of Advanced Materials, 2010, pp. 356 – 388. https://doi.org/10.1533/9781845699949.3.356
11. German R.M. Sintered tungsten heavy alloys: Review of microstructure, strength, densification, and distortion. International Journal of Refractory Metals and Hard Materials, 2022, v. 108, art. 105940. https://doi.org/10.1016/j.ijrmhm.2022.105940
12. Kiran U.R., Babu U.C., Nandi H.K., Sarkar R., Nandy T.K. Microstructure and mechanical properties of matrix alloy (Ni-Fe-Co-W) derived from tungsten heavy alloys. Materials Today: Proceedings, 2021, v. 44, part 1, pp. 2403 – 2410. https://doi.org/10.1016/j.matpr.2020.12.462
13. Kiran U.R., Panchal A., Sankaranarayana M., Nandy T.K. Tensile and impact behavior of swaged tungsten heavy alloys processed by liquid phase sintering. International Journal of Refractory Metals and Hard Materials, 2013, v. 37, pp. 1 – 11. https://doi.org/10.1016/j.ijrmhm.2012.10.002
14. Поварова К.Б., Алымов М.И., Гаврилин О.С., Дроздов А.А., Качнов А.И., Кореновский Н.Л., Банных И.О. Структура и свойства компактных образцов тяжелых сплавов W-Ni-Fe-Co, приготовленных из нанопорошков. Металлы, 2008, № 1, с. 65 – 69. https://doi.org/10.1134/S0036029508010102 / Povarova K.B., Alymov M.I., Drozdov A.A., Korenovskii N.L., Bannykh I.O., Gavrilin O.S., Kachnov A.I. Structure and properties of W-Ni-Fe-Co heavy alloys compacted from nanopowders. Russian Metallurgy (Metally), 2008, no. 1, pp. 52 – 55. https://doi.org/10.1134/S0036029508010102
15. Агте К., Вацек И. Вольфрам и молибден. М.: Энергия, 1964, 455 с. / Agte K., Vatsek I. Volfram i molibden [Tungsten and molybdenum]. Moscow, Energiya Publ., 1964, 455 p. (In Russ.).
16. Зеликман А.Н., Никитина Л.С. Вольфрам. M.: Металлургия, 1978, 272 с. / Zelikman A.N., Nikitina L.S., Volfram [Tungsten]. Moscow, Metallurgiya Publ., 1978, 272 p. (In Russ.).
17. Савицкий Е.М. Поваров К.Б., Макаров П.В. Металловедение вольфрама. М.: Металлургия, 1978, 223 с. / Savitskiy E.M., Povarov K.B., Makarov P.V. Metallovedenie volframa [Metallography of tungsten]. Moscow, Metallurgiya Publ., 1978, 223 p. (In Russ.).
18. Брагов А.М., Чувильдеев В.Н., Мелехин Н.В., Филиппов А.Р., Константинов А.Ю., Сахаров Н.В. Динамическая прочность тяжелого сплава ВНЖ-90, полученного методом электроимпульсного плазменного спекания. Физическая мезомеханика, 2018, № 21 (2), с. 96 – 102. https://doi.org/10.24411/1683-805X-2018-12010 / Bragov A.M., Chuvildeev V.N., Melekhin N.V., Filippov A.R., Konstantinov A.Yu., Sakharov N.V. Dynamic strength of heavy 90W-7Ni-3Fe alloy produced by spark plasma sintering. Physical Mesomechanics, 2018, v. 22, no. 4, pp. 307 – 312. https://doi.org/10.1134/S1029959919040064
19. Chuvil’deev V.N., Nokhrin A.V., Boldin M.S., Baranov G.V., Sakharov N.V., Belov V.Yu., Lantsev E.A., Popov A.A., Melekhin N.V., Lopatin Yu.G., Blagoveshchenskiy Yu.V., Isaeva N.V. Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W-Ni-Fe tungsten heavy alloys. Journal of Alloys and Compounds, 2019, v. 773, pp. 666 – 688. https://doi.org/10.1016/j.jallcom.2018.09.176
20. Tokita M. Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization. Ceramics, 2021, v. 4, no. 2, pp. 160 – 198. https://doi.org/10.3390/ceramics4020014
21. Ланцев Е.А., Малехонова Н.В., Нохрин А.В., Сметанина К.Е., Мурашов А.А., Щербак Г.В., Воронин А.В., Атопшев А.А. Электроимпульсное (“искровое”) плазменное спекание нанопорошков вольфрама и W+5%Ni, полученных методом высокоэнергетической механоактивации. Журнал технической физики, 2023, т. 93, вып. 11, с. 1550 – 1560. https://doi.org/10.61011/JTF.2023.11.56486.143-23 / Lantsev E.A., Malekhonova N.V., Nokhrin A.V. et al. Elektroimpul’snoe (“iskrovoe») plazmennoe spekanie nanoporoshkov vol’frama i W+5%Ni, poluchennyh metodom vysokoenergeticheskoj mekhanoaktivacii. [Spark plasma sintering of W and W+5%Ni nanopowders prepared by high-energy ball milling]. Zhurnal tekhnicheskoj fiziki [Technical Physics Journal], 2023, v. 93, no. 11, pp. 1550 – 1560. (in Russ.).
22. Ding L., Xiang D.P., Li Y.Y., Li C., Li J.B. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2012, v. 33, pp. 65 – 69. https://doi.org/10.1016/j.ijrmhm. 2012.02.017
23. Dudina D.V., Bokhonov B.B., Ukhina A.V., Anisimov A.G., Mali V.I., Esikov M.A., Batraev I.S., Kuznechik O.O., Pilinevich L.P. Reactivity of materials towards carbon of graphite foil during spark plasma sintering: A case study using Ni–W powders. Materials Letters, 2016, v. 168, pp. 62 – 67. https://doi.org/10.1016/j.matlet.2016.01.018.
24. Ланцев Е.А., Мадехонова Н.В., Чувильдеев В.Н., Нохрин А.В., Цветков Ю.В., Благовещенский Ю.В., Болдин М.С., Андреев П.В., Сметанина К.Е., Исаева Н.В. Исследование особенностей высокоскоростного спекания мелкозернистых сверхнизкокобальтовых твердых сплавов на основе карбида вольфрама. Часть II. Твердые сплавы WC – (0,3 – 1) масс. % Co. Физика и химия обработки материалов, 2022, № 1, с. 27 – 44. https://doi.org/ 10.30791/0015-3214-2022-1-27-44 / Lantsev, E.A., Malekhonova, N.V., Chuvil’deev, V.N. et al. Study of high-speed sintering of fine-grained hard alloys based on tungsten carbide with ultralow cobalt content: II. Hard alloys WC–(0.3–1) wt % Co. Inorganic Materials: Applied Research, 2023, v. 14, no. 3, pp. 677 – 690. https://doi.org/10.1134/S2075113323030255
25. Golovkina L.S., Orlova A.I., Boldin M.S., Sakharov N.V., Chuvil’deev V.N., Nokhrin A.V., Konings R., Staicu D. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides. Journal of Nuclear Materials, 2017, v. 489, p. 158 – 163. https://doi.org/10.1016/j.jnucmat.2017.03.031
26. Golovkina L.S., Orlova A.I., Nokhrin A.V., Boldin M.S., Lantsev Е.А., Chuvil’deev V.N., Sakharov N.V., Shotin S.V., Zelenov A.Yu. Spark plasma sintering of fine-grained ceramic-metal composites YAG:Nd-(W,Mo) based on garnet-type oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. Journal of Nuclear Materials, 2018, v. 511, pp. 109 – 121. https://doi.org/10.1016/j.jnucmat.2018.09.006
27. Сиротинкин В.П., Михайлова А.Б., Шамрай В.Ф., Самохин А.В., Синайский М.А., Тихомиров С.А., Тарасов О.Д. Анализ микроструктуры порошков вольфрама методом Вильямсона-Холла на дифрактометре с высокоскоростным детектором. Заводская лаборатория. Диагностика материалов, 2013, т. 79, № 6, с. 25 – 28. / Sirotinkin V.P., Mikhailova A.B., Shamrai V.F., Samokhin A.V., Sinaiskii M.A., Tikhomirov S.A., Tarasov O.D. Analiz mikrostruktury poroshkov vol’frama metodom Vil’yamsona-Holla na difraktometre s vysokoskorostnym detektorom [Analysis of the microstructure of tungsten nanopowders by Williamson-Hall method on a diffractometer with a high-speed detector]. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Diagnostics of Materials], 2013, v. 79, no. 6, pp. 25 – 28. (In Russ.).
28. Сиротинкин В.П., Михайлова А.Б., Шамрай В.Ф., Самохин А.В., Синайский М.А., Тихомиров С.А., Тарасов О.Д. Определение структурных характеристик нанопорошков вольфрама по профилю одного рентгеновского пика по программе WINIFT. Заводская лаборатория. Диагностика материалов, 2014, т. 80, № 4, с. 33 – 37. / Sirotinkin V.P., Mikhailova A.B., Shamrai V.F., Samokhin A.V., Sinaiskii M.A., Tikhomirov S.A., Tarasov O.D. Opredelenie strukturnyh harakteristik nanoporoshkov vol’frama po profilyu odnogo rentgenovskogo pika po programme WINIFT [Determination of the structural characteristics of tungsten nanopowders by the profile a single X-ray diffraction peak using WINIFT software]. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Diagnostics of Materials], 2014, v. 80, no. 4, pp. 33 – 37. (In Russ.).
29. Guillermet A.F., Östlund L. Experimental and theoretical study of the phase equilibria in the Fe-Ni-W system. Metallurgical and Materials Transactions A, 1986, v. 17, pp. 1809 – 1823. https://doi.org/10.1007/BF02817278
30. Salleh F., Tahari M.N.A., Samsuri A., Saharuddin T.S.T., Sulhadi S.S., Yarmo M.A. Physical and chemical behaviour of tungsten oxide in the presence of nickel additive under hydrogen and carbon monoxide atmospheres. International Journal of Hydrogen Energy, 2021, v. 46, no. 48, pp. 24814 – 24830. https://doi.org/10.1016/j.ijhydene.2020.08.099.
31. Родионов Д.П., Гервасьева И.В., Хлебникова Ю.В., Сазонова B.А., Соколов Б.К. Влияние легирования и термической обработки на формирование кубической текстуры рекристаллизации в никелевых сплавах. Физика металлов и металловедение, 2005, т. 99, № 1, с. 88 – 98. / Rodionov D.P., Gervas’eva I.V., Khlebnikova Yu.V., Sazonova V.A., Sokolov B.K. Effect of alloying and heat treatment on the formation of recrystallization cube texture in nickel alloys. The Physics of Metals and Metallography, 2005, v. 99, no. 1, p. 80 – 89.
32. Smetanina K.E., Andreev P.V., Nokhrin A.V., Lantsev E.A., Chuvildeev V.N. Carbon contamination during spark plasma sintering of powder materials: A brief overview. Journal of Alloys and Compounds, 2024, v. 973, art. 172823. https://doi.org/10.1016/j.jallcom.2023.172823
33. Zhao J., Gao K., Liu D., Ma T., Sun D., Gao Y., Pan K., An L. Sintering process in hot oscillatory pressure of 90W–7Ni–3Fe refractory alloy at different time. Vacuum, 2022, v. 195, art. 110697. https://doi.org/10.1016/j.vacuum.2021.110697
34. Mondal A., Upadhyaya A., Agrawal D. Effect of heating mode and sintering temperature on the consolidation of 90W–7Ni–3Fe alloys. Journal of Alloys and Compounds, 2011, v. 509, no. 2, pp. 301 – 310. https://doi.org/10.1016/j.jallcom.2010.09.008
35. Gao K., Zhao J., Zhao W., Ren C., Kong Q., Duan Z., An L. Hot oscillatory pressure sintered W–Ni–Fe refractory alloy under different sintering pressures: Microstructures, densification behavior and properties. Vacuum, 2023, v. 214, art. 112183. https://doi.org/10.1016/j.vacuum.2023.112183
36. Gao K., Xu Y., Tang G., Fan L., Zhang R., An L. Oscillating pressure sintering of W–Ni–Fe refractory alloy. Journal of Alloys and Compounds, 2019, v. 805, pp. 789 – 793. https://doi.org/10.1016/j.jallcom.2019.07.141
37. Zhang W., Li C., Zhou Y., Yang X., Song J., Wang D., Zhang Y., Le G. Laser melting deposition of fine-grained 90W-7Ni-3Fe alloys using pre-sintered granulated powder. International Journal of Refractory Metals and Hard Materials, 2024, v. 119, art. 106507. https://doi.org/10.1016/j.ijrmhm.2023.106507
38. Wang Y.P., Ma S.Y., Yang X.S., Zhou Y.Z., Liu X., Li J.F., Zhang J.J., Li C., Wang X.Y., Le G.M., Zhang Y. Microstructure and strengthening mechanisms of 90W–7Ni–3Fe alloys prepared using laser melting deposition. Journal of Alloys and Compounds, 2020, v. 838, art. 155545. https://doi.org/10.1016/j.jallcom.2020.155545
39. Gong X., Fan J.L., Ding F., Song M., Huang B.Y. Effect of tungsten content on microstructure and quasi-static tensile fracture characteristics of rapidly hot-extruded W–Ni–Fe alloys. International Journal of Refractory Metals and Hard Materials, 2012, v. 30, no. 1, pp. 71 – 77. https://doi.org/10.1016/j.ijrmhm.2011.06.014
40. Durlu N., Çalişkan N.K., Bor Ş. Effect of swaging on microstructure and tensile properties of W–Ni–Fe alloys. International Journal of Refractory Metals and Hard Materials, 2014, v. 42, pp. 126 – 131. https://doi.org/10.1016/j.ijrmhm.2013.08.013
41. Xiang D.P., Ding L., Li Y.Y., Chen G.B., Zhao Y.W. Preparation of fine-grained tungsten heavy alloys by spark plasma sintered W–7Ni–3Fe composite powders with different ball milling time. Journal of Alloys and Compounds, 2013, v. 562, pp. 19 – 24. https://doi.org/10.1016/j.jallcom.2013.02.014
42. Xiang D.P., Ding L., Li Y.Y., Li J.B., Li X.Q., Li C. Microstructure and mechanical properties of fine-grained W–7Ni–3Fe heavy alloy by spark plasma sintering. Materials Science and Engineering: A, 2012, v. 551, pp. 95 – 99. https://doi.org/10.1016/j.msea.2012.04.099
43. Akhtar F. An investigation on the solid state sintering of mechanically alloyed nano-structured 90W–Ni–Fe tungsten heavy alloy. International Journal of Refractory Metals and Hard Materials, 2008, v. 26, no. 3, pp. 145 – 151. https://doi.org/10.1016/j.ijrmhm.2007. 05.011.