1. Маслов А.А., Назаров А.Ю., Николаев А.А., Варданян Э.Л., Рамазанов К.Н. Исследование покрытий на основе системы Ti – Al – C при помощи синхротронного излучения и рентгеновской дифракции. Перспективные материалы, 2023, № 6, с. 60 – 66. DOI: 10.30791/1028-978X-2023-6-60-66. / Maslov A.A., Nazarov A.Yu., Nikolaev A.A., Vardanyan E.L., Ramazanov K.N. Synchrotron radiation and X-ray diffraction study of Ti–Al–C-based coatings. Inorg. Mater. Appl. Res., 2023, v. 14, pp. 1482 – 1486. https://doi.org/10.1134/S207511332305026X
2. Криницын М.Г., Фирсина И.А., Барановский А.В., Рагулина М.П. Формирование объемных образцов из порошка МАХ-фазы Ti3AlC2 методом селективного лазерного спекания. Физика и химия обработки материалов, 2021, № 2, c. 27 33. / Krinitcyn M.G., Firsina I.A., Baranovskiy A.V., Ragulina M.P. Formation of bulk samples from the Ti3AlC2 MAX-phase powder by selective laser sintering. Inorg. Mater. Appl. Res., 2022, v. 13, pp. 641 – 645. https://doi.org/10.1134/S2075113322030212
3. Hwang S.K., Kang S.-M., Rethinasabapathy M., Roh C., Huh Y.S. MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chemical Engineering Journal, 2020, v. 397, art. 125428. https://doi.org/10.1016/j.cej.2020.125428
4. Shahzad F., Alhabeb M., Hatter C.B., Anasori B., Man Hong S., Koo C.M., Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, v. 353, pp. 1137 – 1140. https://doi.org/10.1126/science.aag2421
5. Xiong S., He T., Zhou T., Wang D., Wang Y., Dai C., Liu W. In situ synthesis of MXene/Ag nanocomposites based flexible SERS substrates on PDMS for detection on fruit surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, v. 654, art. 130077. https://doi.org/10.1016/j.colsurfa.2022.130077
6. Naguib M., Barsoum M.W., Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Advanced Materials, 2021, v. 33, art. 2103393. https://doi.org/10.1002/adma.202103393.
7. Vahid Mohammadi A., Rosen J., Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, v. 372, art. eabf1581. https://doi.org/10.1126/science.abf1581
8. Li X., Huang Z., Shuck C.E., Liang G., Gogotsi Y., Zhi C. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem., 2022, v. 6, pp. 389 – 404. https://doi.org/10.1038/s41570-022-00384-8
9. Wu X., Ma P., Sun Y., Du F., Song D., Xu G. Application of MXene in electrochemical sensors: A review. Electroanalysis, 2021, v. 33, pp. 1827 – 1851. https://doi.org/10.1002/elan.202100192
10. Ren C.E., Hatzell K.B., Alhabeb M., Ling Z., Mahmoud K.A., Gogotsi Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett., 2015, v. 6, pp. 4026 – 4031. https://doi.org/10.1021/acs.jpclett.5b01895
11. Streletskiy O., Zavidovskiy I., Yakubovsky D., Doroshina N., Syuy A., Lebedinskij Y., Markeev A., Arsenin A., Volkov V., Novikov S. Tailoring of the distribution of SERS-active silver nanoparticles by post-deposition low-energy ion beam irradiation. Materials, 2022, v. 15, art. 7721. https://doi.org/10.3390/ma15217721
12. Streletskiy O., Perevedentseva E., Zavidovskiy I., Karmenyan A., Sychev V., Sadykova V., Kuvarina A., Cheng C.-L. Amorphous carbon films with embedded well-dispersed nanodiamonds: plasmon-enhanced analysis and possible antimicrobial applications. Magnetochemistry, 2022, v. 8, art. 171. https://doi.org/10.3390/magnetochemistry8120171
13. Doroshina N.V., Streletskiy O.A., Zavidovskiy I.A., Tatmyshevskiy M.K., Tselikov G.I., Kapitanova O.O., Syuy A.V., Romanov R., Mishra P., Bobrovs V., Markeev A.M., Yakubovsky D.I., Veselova I.A., Arsenin A.V., Volkov V.S., Novikov S.M. Crystallinity as a factor of SERS stability of silver nanoparticles formed by Ar+ irradiation. Heliyon, 2024, v. 10, no. 6, art. e27538. https://doi.org/10.1016/j.heliyon.2024.e27538
14. Beermann J., Novikov S.M., Leosson K., Bozhevolnyi S.I. Surface enhanced Raman microscopy with metal nanoparticle arrays. J. Opt. A: Pure Appl. Opt., 2009, v. 11, art. 075004. https://doi.org/10.1088/1464-4258/11/7/075004
15. Novikov S.M., Boroviks S., Evlyukhin A.B., Tatarkin D.E., Arsenin A.V., Volkov V.S., Bozhevolnyi S.I. Fractal shaped periodic metal nanostructures atop dielectric-metal substrates for SERS applications. ACS Photonics, 2020, v. 7, pp. 1708 – 1715. https://doi.org/10.1021/acsphotonics.0c00257
16. Langer J., Jimenez De Aberasturi D., Aizpurua J., Alvarez-Puebla R.A., Auguié B., Baumberg J.J., Bazan G.C., Bell S.E.J., Boisen A., Brolo A.G., Choo J., Cialla-May D., Deckert V., Fabris L., Faulds K., García De Abajo F.J., Goodacre R., Graham D., Haes A.J., Haynes C.L., Huck C., Itoh T., Käll M., Kneipp J., Kotov N.A., Kuang H., Le Ru E.C., Lee H.K., Li J.-F., Ling X.Y., Maier S.A., Mayerhöfer T., Moskovits M., Murakoshi K., Nam J.-M., Nie S., Ozaki Y., Pastoriza-Santos I., Perez-Juste J., Popp J., Pucci A., Reich S., Ren B., Schatz G.C., Shegai T., Schlücker S., Tay L.-L., Thomas K.G., Tian Z.-Q., Van Duyne R.P., Vo-Dinh T., Wang Y., Willets K.A., Xu C., Xu H., Xu Y., Yamamoto Y.S., Zhao B., Liz-Marzán L.M. Present and future of surface-enhanced Raman scattering. ACS Nano, 2020, v. 17, pp. 28 – 117. https://doi.org/10.1021/acsnano.9b04224.
17. Shevchuk K., Sarycheva A., Gogotsi Y. Evaluation of two-dimensional transition-metal carbides and carbonitrides (MXenes) for SERS substrates. MRS Bulletin, 2022, v. 47, pp. 545 – 554. https://doi.org/10.1557/s43577-022-00276-8
18. Sarycheva A., Makaryan T., Maleski K., Satheeshkumar E., Melikyan A., Minassian H., Yoshimura M., Gogotsi Y. Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C, 2017, v. 121, pp. 19983 – 19988. https://doi.org/10.1021/acs.jpcc.7b08180
19. Peng Y., Lin C., Long L., Masaki T., Tang M., Yang L., Liu J., Huang Z., Li Z., Luo X., Lombardi J.R., Yang Y. Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett., 2021, v. 13, art. 52. https://doi.org/10.1007/s40820-020-00565-4
20. Adomavičiūtė-Grabusovė S., Ramanavičius S., Popov A., Šablinskas V., Gogotsi O., Ramanavičius A. Selective enhancement of SERS spectral bands of salicylic acid adsorbate on 2D Ti3C2Tx-based MXene film. Chemosensors, 2021, v. 9, art. 223. https://doi.org/10.3390/chemosensors9080223.
21. Gao Y., Cao Y., Zhuo H., Sun X., Gu Y., Zhuang G., Deng S., Zhong X., Wei Z., Li X., Wang J. Mo2TiC2 MXene: A promising catalyst for electrocatalytic ammonia synthesis. Catalysis Today, 2020, v. 339, pp. 120 – 126. https://doi.org/10.1016/j.cattod. 2018.12.029
22. Wu Z., Shen J., Li C., Zhang C., Feng K., Wang Z., Wang X., Meira D.M., Cai M., Zhang D., Wang S., Chu M., Chen J., Xi Y., Zhang L., Sham T.-K., Genest A., Rupprechter G., Zhang X., He L. Mo2TiC2 MXene-supported Ru clusters for efficient photo-thermal reverse water–gas shift. ACS Nano, 2023, v. 17, pp. 1550 – 1559. https://doi.org/10.1021/acsnano. 2c10707
23. Ali I., Yousaf M., Sajid I.H., Hakim M.W., Rizwan S. Reticulation of 1D/2D Mo2TiC2 MXene for excellent supercapacitor performance. Materials Today Chemistry, 2023, v. 34, art. 101766. https://doi.org/10.1016/j.mtchem.2023.101766
24. Li G., Zhou B., Wang P., He M., Fang Z., Yuan X., Wang W., Sun X., Li Z. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by oxidized Mo2TiC2 MXene. Catalysts, 2022, v. 12, art. 850. https://doi.org/10.3390/catal12080850
25. Maughan P.A., Bouscarrat L., Seymour V.R., Shao S., Haigh S.J., Dawson R., Tapia-Ruiz N., Bimbo N. Pillared Mo2TiC2 MXene for high-power and long-life lithium and sodium-ion batteries. Nanoscale Adv., 2021, v. 3, pp. 3145 – 3158. https://doi.org/10.1039/D1NA00081K
26. Liu R., Jiang L., Lu C., Yu Z., Li F., Jing X., Xu R., Zhou W., Jin S. Large-scale two-dimensional titanium carbide MXene as SERS-active substrate for reliable and sensitive detection of organic pollutants. Spectro-chimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, v. 236, art. 118336. https://doi.org/10.1016/j.saa.2020.118336
27. Mičušík M., Šlouf M., Stepura A., Soyka Y., Ovodok E., Procházka M., Omastová M. Aging of 2D MXene nanoparticles in air: An XPS and TEM study. Applied Surface Science, 2023, v. 610, art. 155351. https://doi.org/10.1016/j.apsusc.2022.155351
28. Redel E., Chakravadhanula V.S.K., Lan Y., Natzeck C., Heissler S. On the self-assembly of TiOx into 1D NP network nanostructures. Nanotechnology, 2015, v. 26, art. 051001. https://doi.org/10.1088/0957-4484/26/5/051001
29. Peng S., Zhang R., Song Y., Pei Y., Bi J., Feng J., Tang M., Cao Y. Tunable superconductivity of epitaxial TiN films through oxygen doping. AIP Advances, 2020, v. 10, art. 055113. https://doi.org/10.1063/5.0008431
30. Patra A., Bhavya M.B., Manasa G., Samal A.K., Rout C.S. 2D MXenes as a promising candidate for surface enhanced Raman spectroscopy: State of the art, recent trends, and future prospects. Advanced Functional Materials, 2023, v. 33, art. 2306680. https://doi.org/10.1002/adfm.202306680
31. Tian S., Neumann O., McClain M.J., Yang X., Zhou L., Zhang C., Nordlander P., Halas N.J. Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection. Nano Lett., 2017, v. 17, pp. 5071 – 5077. https://doi.org/10.1021/acs.nanolett.7b02338.