1. Rojo-López G., González-Fonteboa B., Luis Pérez-Ordóñez J. et al. Parametric analysis in sustainable self-compacting mortars using genetic programming. Constr. Build. Mater, 2023, v. 404, art. 133189.
2. Qian Y., Kawashima S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cem. Concr. Composю, 2018, v. 86, pp. 288 – 296.
3. Lesovik V., Tolstoy A., Fediuk R. et al. Improving the performances of a mortar for 3D printing by mineral modifiers. Buildings, 2022, v. 12, no. 8, art. 1181.
4. Khalil N. Aouad G., El Cheikh K. et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr. Build. Mater., 2017, v. 157. pp. 382 – 391.
5. Hambach M., Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. Cem. Concr. Compos., 2017, v. 79, pp. 62 – 70.
6. Panda B., Paul S.C., Tan M.J. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater. Lett., 2017, v. 209, pp. 146 – 149.
7. Wolfs R.J.M., Bos F.P., Salet T.A.M. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cem. Concr. Res., 2018. v. 106, pp. 103 – 116.
8. Лесовик В.С. Елистраткин М., Глаголев Е. и др. Формирование свойств композиций для строительной печати. Вестник БГТУ им. В.Г. Шухова, 2017, № 10, c. 6 – 14.
• Lesovik V.S., Elistratkin M.Ju., Glagolev E.S., Shatalova S.V., Starikov M.S. Formirovanie svojstv kompozicij dlja stroitel’noj pechati [Formation of properties of compositions for construction 3D printing]. Vestnik BGTU im. V.G. Shuhova [Bulletin of Belgorod state technological university named after V. G. Shukhov], 2017, no. 10, pp. 6 – 14. (In Russ.).
9. Atzeni C., Massidda L., Sanna U. Comparison between rheological models for portland cement pastes. Cem. Concr. Res., 1985, v. 15, no. 3, pp. 511 – 519.
10. Papo A. Rheological models for cement pastes. Mater. Struct., 1988, v. 21, no. 1, pp. 41 – 46.
11. Vom Berg W. Influence of specific surface and concentration of solids upon the flow behaviour of cement pastes. Mag. Concr. Res., 1979, v. 31, no. 109, pp. 211 – 216.
12. Шаповалов, Н.А. Полуэктова В.А. Пластифицирующие добавки в бетоны: монография. Белгород: Изд-во БГТУ, 2016, 128 с. / Shapovalov, N.A., Poluektova V.A. Plastificiruyushchie dobavki v betony: monografiya [Plasticizing additives in concrete: a monograph]. Belgorod: Publishing house of Belgorod State Technological University, 2016,128 p. (In Russ.).
13. Шаповалов Н.А., Полуэктова В.А. Наномодификатор для цементных смесей и бетона. Вестник БГТУ им. В.Г. Шухова, 2015, № 5, c. 72 – 76. / Shapovalov N.A., Poluektova V.A. Nanomodifikator dlya cementnyh smesej i betona [Nanomodifier for cement mixtures and concrete]. Vestnik BGTU im. V.G. Shukhov [Bulletin of Belgorod State Technological University named after V.G. Shukhov], 2015, no. 5, pp. 72 – 76. (In Russ.).
14. Полуэктова В.А., Кожанова Е.П., Шаповалов Н.А. Агрегативная устойчивость высокопроникающей суспензии при кондиционировании твердых радиационно-активных отходов методом цементирования. Вестник технологического университета, 2022, т. 25, № 1, с. 45 – 48. / Poluektova V.A., Kozhanova E.P., Shapovalov N.A. Agregativnaja ustojchivost’ vysokopronikajushhej suspenzii pri kondicionirovanii tverdyh radiacionno-aktivnyh othodov metodom cementirovanija [Aggregative stability of a highly penetrating suspension during conditioning of solid radiation-active waste by cementation method]. Vestnik tekhnologicheskogo universiteta [Bulletin of the Technological University], 2022, v. 25, no. 1, pp. 45 – 48. (In Russ.).
15. Güneyisi E., Gesoglu M., Naji N. et al. Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel–Bulkley and modified Bingham models. Arch. Civ. Mech. Eng., 2016, v. 16, no. 1, pp. 9 – 19.
16. Полуэктова В.А., Шаповалов Н.А., Бредихина В.Б. Реология поливинилацетатцементных дисперсий: моделирование, исследование, применение для строительной печати. Вестник технологического университета, 2021, т. 24, № 11, с. 85 – 92. / Poluektova V.A., Shapovalov N.A., Bredikhina V.B. Reologija polivinilacetatcementnyh dispersij: modelirovanie, issledovanie, primenenie dlja stroitel’noj pechati. [Rheology of polyvinyl acetate cement dispersions: modeling, research, application for construction printing]. Vestnik tekhnologicheskogo universiteta [Bulletin of the Technological University], 2021, v. 24, no. 11, pp. 85 – 92. (In Russ.).
17. Wallevik O.H., Wallevik J.E. Rheology as a tool in concrete science: The use of rheographs and workability boxes. Cem. Concr. Res. Pergamon, 2011, v. 41, no. 12, pp. 1279 – 1288.
18. De Larrard F., Ferraris C.F., Sedran T. Fresh concrete: A Herschel-Bulkley material. Mater. Struct. Springer Science and Business Media LLC, 1998, v. 31, no. 7, pp. 494 – 498.
19. Gershel W. Consistency of rubber-benzene solutions. Industrial and Engineering Chemistry, 1924, p. 927.
20. Yahia A., Khayat K.H. Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture. Mater. Struct, 2003, v. 36, no. 6, pp. 402 – 412.
21. Feys D., Verhoeven R., De Schutter G. Evaluation of time independent rheological models applicable to fresh self-compacting concrete. Appl. Rheol., 2007, v. 17, no. 5, pp. 56241 – 56244.
22. Feys D., Wallevik J., Yahia A. et al. Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Mater. Struct., 2013, v. 46, no. 1–2, pp. 289–311.
23. Nazar S., Yang J., Ahmad A. et al. Comparative study of evolutionary artificial intelligence approaches to predict the rheological properties of fresh concrete. Mater. Today Commun., 2022, v. 32, art. 103964.
24. El Asri Y., Ben Aicha M., Zaher M. et al. Modelization of the rheological behavior of self-compacting concrete using artificial neural networks. Mater. Today Proc., 2022, v. 58, pp. 1114 – 1121.
25. Nguyen T.-D., Tran T.-H., Hoang N.-D. Prediction of interface yield stress and plastic viscosity of fresh concrete using a hybrid machine learning approach. Adv. Eng. Informatics., 2020, v. 44, art. 101057.
26. Skare E., Sheiati S., Cepuritis R. et al. Rheology modelling of cement paste with manufactured sand and silica fume: Comparing suspension models with artificial neural network predictions. Constr. Build. Mater., 2022, v. 317, art. 126114.
27. Choudhury A. The Role of machine learning algorithms in materials science: A state of srt review on industry 4.0. Arch. Comput. Methods Eng., 2021, v. 28, no. 5, pp. 3361 – 3381.
28. Nazar S., Yang J., Thomas B. et al. Rheological properties of cementitious composites with and without nano-materials: A comprehensive review. J. Clean. Prod., 2020, v. 272, art. 122701.
29. Geng S., Luo Q., Liu K. et al. Research status and prospect of machine learning in construction 3D printing. Case Stud. Constr. Mater., 2023, v. 18, art. e01952.
30. Yao X., Lyu X., Sun J. et al. AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition. Constr. Build. Mater., 2023, v. 375, art. 130898.
31. Charrier M., Ouellet-Plamondon C.M. Artificial neural network for the prediction of the fresh properties of cementitious materials. Cem. Concr. Res., 2022, v. 156, art. 106761.
32. Goh G.D., Sing S.L., Yeong W.Y. A review on machine learning in 3D printing: applications, potential, and challenges. Artif. Intell. Rev., 2021, v. 54, no. 1, pp. 63 – 94.
33. Baumann F.W., Sekulla A., Hassler M. et al. Trends of machine learning in additive manufacturing. Int. J. Rapid Manuf., 2018, v. 7, no. 4. art. 310.
34. Jordan M.I., Mitchell T.M. Machine learning: Trends, perspectives, and prospects. Science. 2015, v. 349,
no. 6245, pp. 255–260.
35. An J., Lee D.H., Cho H.H. et al. Indoor positioning system using smartphone and 360° camera. Jeju, Republic of Korea, 13-15 August 2021, Proceedings 5th IEEE International Conference on Smart Internet of Things, SmartIoT, IEEE, 2021. pp. 342–343.
36. Xames M.D., Torsha F.K., Sarwar F. A systematic literature review on recent trends of machine learning applications in additive manufacturing. J. Intell. Manuf., 2023, v. 34, no. 6, pp. 2529 – 2555.
37. Ciccone F., Bacciaglia A., Ceruti A. Optimization with artificial intelligence in additive manufacturing: a systematic review. J. Brazilian Soc. Mech. Sci. Eng., 2023, v. 45, art. 303.
38. Song H., Ahmad A., Farooq F. et al. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr. Build. Mater., 2021, v. 308, art. 125021.
39. Abu Yaman M., Abd Elaty M., Taman M. Predicting the ingredients of self compacting concrete using artificial neural network. Alexandria Eng. J., 2017, v. 56, no. 4, pp. 523 – 532.
40. Zhang J., Ma G., Huang Y. et al. Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build. Mater., 2019, v. 210, pp. 713 – 719.
41. Nguyen H., Vu T., Vo T.P. et al. Efficient machine learning models for prediction of concrete strengths. Constr. Build. Mater., 2021, v. 266, art. 120950.
42. Shahmansouri A.A., Akbarzadeh Bengar H., Jahani E. Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm. Constr. Build. Mater., 2019, v. 229, art. 116883.
43. Oyebisi S., Alomayri T. Artificial intelligence-based prediction of strengths of slag-ash-based geopolymer concrete using deep neural networks. Constr. Build. Mater., 2023, v. 400, art. 132606.
44. Nazar S., Yang J., Wang X.-E. et al. Estimation of strength, rheological parameters, and impact of raw constituents of alkali-activated mortar using machine learning and SHapely Additive exPlanations (SHAP). Constr. Build. Mater., 2023, v. 377, art. 131014.
45. Abellan-Garcia J., García-Castaño E., Fernández-Gómez J. et al. Modeling the ductility characteristics of ultrahigh-performance fiber-reinforced concrete using a precise, computation-efficient, and comprehensive data-driven random forests-based approach. Mater. Today Commun., 2023, v. 37, art. 106953.
46. Liu Q., Iqbal M.F., Yang J. et al. Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation. Constr. Build. Mater., 2021, v. 268. art. 121082.
47. Stergiou K., Ntakolia C.,Varytis P. et al. Enhancing property prediction and process optimization in building materials through machine learning: A review. Comput. Mater. Sci., 2023, v. 220, art. 112031.