1. Orlova A.I., Ojovan M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 2019, v. 12, no. 16, art. 2638.
2. Yudintsev S.V., Nickolsky M.S., Ojovan M.I., Stefanovsky O.I., Nikonov B.S., Ulanova A.S. Zirconolite polytypes and murataite polysomes in matrices for the REE. Actinide fraction of HLW. Materials, 2022, v. 15, no. 17, art. 6091.
3. Wei G., Liu X., Chen S., Shao D., Yuan W., Lu X., Xie Y., Shu X. Direct immobilization of simulated nuclear waste in performed Gd2Zr2O7 pyrochlore via spark plasma sintering reaction. Materials Chemistry and Physics, 2022, v. 291, art. 126711.
4. Caurant D., Loiseau P., Aubin-Chevaldonnet V., Gourier D., Majérus O., Bardez-Giboire I. Studies on ceramics and glass-ceramics for immobilization of high-level nuclear wastes. In Book: Nuclear materials research developments. Ed. by Keister J.E. Nova Science Publishers, Hauppauge, NY, USA, 2007, 411 p.
5. Wang L., Liang T. Ceramics for high level radioactive waste solidification. Journal of Advanced Ceramics, 2012, v. 1, no. 3, pp. 194 – 203.
6. Папынов Е.К., Белов А.А., Шичалин О.О., Буравлев И.Ю., Азон С.А., Гридасова Е.А., Паротькина Ю.А., Ягофаров В.Ю., Драньков А.Н., Голуб А.В., Тананаев И.Г. Синтез перовскитоподобной керамики SrTiO2 для иммобилизации радиоактивного стронция по технологии реакционного искрового плазменного спекания. Журнал неорганической химии, 2021, т. 66, № 5, с. 592 – 600. / Papynov E.K., Belov A.A., Shichalin O.O., Buravlev I.Yu., Azon S.A., Gridasova E.A., Parotkina Yu.A., Yagofarov V.Yu., Drankov A.N., Golub A.V., Tananaev I.G. Synthesis of perovskite-like SrTiO2 ceramics for radioactive strontium immobilization by spark plasma sintering-reactive synthesis. Russian Journal of Inorganic Chemistry, 2021, v. 66, pp. 645 – 653.
7. Mikhailov D.A., Orlova A.I., Malanina N.V., Nokhrin A.V., Potanina E.A., Chuvil’deev V.N., Boldin M.S., Sakharov N.V., Belkin O.A., Kalenova M.Yu., Lantcev E.A. A study of fine-grained ceramics based on complex oxides ZrO2-Ln2O3 (Ln = Sm, Yb) obtained by spark plasma sintering for inert matrix fuel. Ceramics International, 2018, v. 44, no. 15, pp. 18595 – 18608.
8. Chauvin N., Konings R.J., Matzke H. Optimization of inert matrix fuel concepts for americium transmutation. Journal of Nuclear Materials, 1999, v. 274, no. 1 – 2, pp. 105 – 111.
9. Neeft E.A.C., Bakker K., Schram R.P.C., Conrad R., Konings R.J.M. The EFTTRA-T3 irradiation experiment on inert matrix fuels. Journal of Nuclear Materials, 2003, v. 320, no. 1 – 2, pp. 106 – 116.
10. Golovkina L.S., Orlova A.I., Boldin M.S., Sakharov N.V., Chuvil’deev V.N., Nokhrin A.V., Konings R., Staicu D. Development of composite ceramic materials with improved thermal conductivity and plasticity based on garnet-type oxides. Journal of Nuclear Materials, 2017, v. 489, pp. 158 – 163.
11. Potanina E., Golovkina L., Orlova A., Nokhrin A., Boldin M., Sakharov N. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering. Journal of Nuclear Materials, 2016, v. 473, pp. 93 – 98.
12. Лившиц Т.С. Изоморфизм актиноидов и РЗЭ в синтетических ферритных гранатах. Геология рудных месторождений, 2010, т. 52, № 1, с. 53 – 64. / Livshits T.S. Isomorphism of actinides and REE in synthetic ferrite garnets. Geology of Ore Deposits, 2010, v. 52, no. 1, pp. 46 – 57.
13. Томилин С.В., Лизин А.А., Лукиных А.Н., Лившиц Т.С. Радиационная и химическая устойчивость алюмоиттриевого граната. Радиохимия, 2011, т. 53, № 2, с. 162 – 165. / Tomilin S.V., Lizin A.A., Lukinykh A.N., Livshits T.S. Radiation resistance and chemical stability of yttrium aluminum garnet. Radiochemistry, 2011, v. 53, no. 2, pp.186 – 190.
14. Лившиц Т.С., Лизин А.А., Джанг Дж., Юинг Р.Ч. Аморфизация редкоземельных алюминатных гранатов при ионном облучении и распаде примеси 244Cm. Геология рудных месторождений, 2010, т. 52, № 4, с. 297 – 309. / Livshits T.S., Lizin A.A., Zhang J.M., Ewing R.C. Amorphization of rare earth aluminate garnets under ion irradiation and decay of 244Cm admixture. Geology of Ore Deposits, 2010, v. 52, p. 267 – 278.
15. Zagumennyi A.I., Lutts G.B., Popov P.A., Sirota N.N., Shcherbakov I.A. The thermal conductivity of YAG and YSAG laser crystals. Laser Physics, 1993, v. 3, pp. 1064 – 1065.
16. Wang J., Xu F., Wheatley R.J., Neate N., Hou X. Yb3+ doping effects on thermal conductivity and thermal expansion of yttrium aluminium garnet. Ceramics International, 2016, v. 42, iss. 12, pp. 14228 – 14235.
17. Tokita M. Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization. Ceramics, 2021, v. 4, no. 2, pp. 160 – 198.
18. Orlova A.I. Crystalline phosphates for HLW immobilization – composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology. Journal of Nuclear Materials, 2022, v. 559, art. 153407.
19. Salvato D., Vigier J.-F., Cologna M., Luzzi L., Somers J., Tyrpekl V. Spark plasma sintering of fine uranium carbide powder. Ceramics International, 2017, v. 43, no. 1, part A, pp. 866 – 869.
20. Yang K., Kardoulaki E., Zhao D., Broussard A., Metzger K., White J.T., Sivack M.R., Mcclellan K.J., Lahoda E.J., Lian J. Uranium nitride (UN) pellets with controllable microstructure and phase – fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties. Journal of Nuclear Materials, 2021, v. 557, art. 153272.
21. Шичалин О.О., Папынов Е.К., Майоров В.Ю., Белов А.А., Модин Е.Б., Буравлев И.Ю., Азарова Ю.А., Голуб А.В., Гридасова Е.А., Сухорада А.Е., Тананаев И.Г., Авраменко В.А. Искровое плазменное спекание алюмосиликатных керамических матриц для иммобилизации радионуклидов цезия. Радиохимия, 2019, т. 61, № 2, с. 135 – 141. / Shichalin O.O., Papynov E.K., Maiorov V.Y., Belov A.A., Modin E.B., Buravlev I.Yu., Azarova Yu.A., Golub A.V., Gridasova E.A., Sukhorada A.E., Tananaev I.G., Avramenko V.A. Spark plasma sintering of aluminosilicate ceramic matrices for immobilization of cesium radionuclides. Radiochemistry, 2019, v. 61, pp. 185 – 191.
22. Алексеева Л.С., Нохрин А.В., Орлова А.И., Болдин М.С., Ланцев Е.А., Мурашов А.А., Корченкин К.К., Рябков Д.В., Чувильдеев В.Н. Керамика на основе фосфата NaRe2(PO4)3 со структурой коснарита как матрица для иммобилизации технеция. Неорганические материалы, 2022, т. 58, № 3,с. 341 – 348. / Alekseeva L.S., Nokhrin A.V., Orlova A.I., Boldin M.S., Lantsev E.A., Murashov A.A., Korchenkin K.K., Ryabkov D.V., Chuvil’deev V.N. Ceramics based on the NaRe2(PO4)3 phosphate with the kosnarite structure as waste forms for technetium immobilization. Inorganic Materials, 2022, v. 58, no. 3, pp. 325 – 332.
23. Папынов Е.К., Шичалин О.О., Белов А.А., Буравлев И.Ю., Портнягин А.С., Азон С.А., Шлык Д.Х., Буравлева А.А., Паротькина Ю.А., Непомнющая В.А., Корнакова З.Э., Гридасова А.В., Тананаев И.Г., Сергиенко В.И. Синтез минералоподобной керамики SrWO4 со структурой шеелита и радиоизотопного изделия на ее основе. Журнал неорганической химии, 2021, т. 66, № 9, с. 1346 – 1359. / Papynov E.K., Shichalin O.O., Belov A.A., Buravlev I.Yu., Portnyagin A.S., Azon S.A., Shlyk D.Kh., Buravleva A.A., Parot’kina Yu.A., Nepomnyushchaya V.A., Kornakova Z.E., Gridasov A.V., Tananaev I.G., Sergienko V.I. Synthesis of mineral-like SrWO4 ceramics with the scheelite structure and a radioisotope product based on it. Russian Journal of Inorganic Chemistry, 2021, v. 66, pp. 1434 – 1446.
24. Папынов Е.К., Шичалин О.О., Мироненко А.Ю., Ряков А.В., Манаков И.В., Махров П.В., Буравлев И.Ю., Тананаев И.Г., Авраменко В.А., Сергиенко В.И. Синтез высокоплотных таблеток из порошков диоксида урана методом электроимпульсного спекания под давлением в пресс-формах различного типа. Радиохимия, 2018, т. 60, № 4, с. 311 – 318. / Papynov E.K., Shichalin O.O., Mironenko A.Y., Ryakov A.V., Manakov I.V., Makhrov P.V., Buravlev I.Yu., Tananaev I.G., Avramenko V.A., Sergienko V.I. Synthesis of high-density pellets of uranium dioxide by spark plasma sintering in dies of different types. Radiochemistry, 2018, v. 60, pp. 362 – 370.
25. Papynov E.K., Shichalin O.O., Medkov M.A., Grishchenko D.N., Tkachenko I.A., Golub A.V., Buravlev I.Y., Tananaev I.G., Avramenko V.A., Fedorets A.N., Pechnikov V.S. Spark plasma sintering of special-purpose functional ceramics based on UO2, ZrO2, Fe3O4/α-Fe2O3. Glass Physics and Chemistry, 2018, v. 44, no. 6, pp. 632 – 640.
26. Johnson K.D., Wallenius J., Jolkkonen M., Claisse A. Spark plasma sintering and porosity studies of uranium nitride. Journal of Nuclear Materials, 2016, v. 473, pp. 13 – 17.
27. Cologna M., Tyrpekl V., Ernstberger M., Stohr S., Somers J. Sub-micrometre grained UO2 pellets consolidated from sol gel beads using spark plasma sintering (SPS). Ceramics International, 2016, v. 42, no. 6, pp. 6619 – 6623.
28. Malkki P., Jolkkonen M., Hollmer T., Wallenius J. Manufacture of fully dense uranium nitride pellets using hydride derived powders with spark plasma sintering. Journal of Nuclear Materials, 2014, v. 452, no. 1 – 3, pp. 548 – 551.
29. Ge L., Subhash G., Baney R.H., Tulenko J.S., McKenna E. Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS). Journal of Nuclear Materials, 2013, v. 435, no. 1 – 3, pp. 1 – 9.
30. Golovkina L.S., Orlova A.I., Nokhrin A.V., Boldin M.S., Lantsev E.A., Chuvil’deev V.N., Sakharov N.V., Shotin S.V., Zelenov A.Yu. Spark plasma sintering of fine-grained ceramic-metal composites YAG:Nd-(W,Mo) based on garnet-type oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. Journal of Nuclear Materials, 2018, v. 511, pp. 109 – 121.
31. Алексеева Л.С., Андреев П.В., Дрожилкин П.Д., Болдин М.С., Сметанина К.Е., Мурашов А.А., Каразанов К.О., Щербак Г.В. Электроимпульсное плазменное спекание керамики на основе Si2N2O. Неорганические материалы, 2022, т. 58, № 7, с. 801 – 806. / Alekseeva L.S., Andreev P.V., Drozhilkin P.D., Boldin M.S., Smetanina K.E., Murashov A.A., Karazanov K.O., Shcherbak G.V. Preparation of Si2N2O ceramics by spark plasma sintering. Inorganic Materials, 2022, v. 58, no. 7, pp. 772 – 777.
32. Sagi S., Hayun S. High-temperature heat capacity of SPS-processed Y3Al5O12 (YAG) and Nd:YAG. The Journal of Chemical Thermodynamics, 2016, v. 93, pp. 123 – 126.
33. Choudhury A., Brooks C.R. Contributions to the heat capacity of solid molybdenum in the range 300 – 2890 K. International Journal of Thermophysics, 1984, v. 5, no. 4, pp. 403 – 429.
34. Hargman D.L. MATPRO — Version 11. A Handbook of Materials Properties for use in the analysis of light water reactor fuel rod behavior (Idaho National Engineering Lab, Idaho Falls, USA, 1981).