1. Mari D., Miguel L., Nebel С.E. Comprehensive hard materials. Elsevier, 2014, 1806 p.
2. Konyashin I., Ries B. Cemented carbides. Elsevier, 2022, 392 p.
3. Анисименко Г.Е., Лопатин Ю.М. Новые твердые сплавы для сменных многогранных пластин. Обработка металлов: технология, оборудование, инструменты, 2008, № 4 (41), с. 25 – 33. / Anisimenko G.E., Lopatin Yu.M. Novye tverdye splavy dlya smennyh mnogogrannyh plastin. [New hard alloys for reversible cutting plates]. Obrabotka metallov: tekhnologiya, oborudovanie, instrumenty [Metal processing: technology, equipment, tools], 2008, no. 4 (41), pp. 25 – 33. (In Russ).
4. Благовещенский Ю.В., Исаева Н.В., Мельник Ю.И., Благовещенская Н.В., Чувильдеев В.Н., Москвичева А.В., Сахаров Н.В., Болдин М.С. Консолидация нанопорошков WC-Co различными методами. Перспективные материалы, 2011, № S13, с. 92 – 99. / Blagoveshhenskij Yu.V., Isaeva N.V., Melnik Yu.I., Blagoveshhenskaya N.V., Chuvildeyev V.N., Moskvicheva A.V., Saxarov N.V., Boldin M.S. Konsolidaciya nanoporoshkov WC-Co razlichny`mi metodami [Consolidation of WC-Co nanopowders by various methods]. Perspektivnye materialy [Advanсed materials], 2011, № S13, pp. 92 – 99. (In Russ).
5. Благовещенский Ю.В., Исаева Н.В., Благовещенская Н.В., Мельник Ю.И., Чувильдеев В.Н., Нохрин А.В., Сахаров Н.В., Болдин М.С., Смирнова Е.С., Шотин С.В., Левинский Ю.В., Вольдман Г.М. Методы компактирования наноструктурных вольфрам-кобальтовых сплавов из нанопорошков, полученных методом плазмохимического синтеза. Перспективные материалы, 2015, № 1, с. 5 – 21. / Blagoveshchenskiy Y.V., Isayeva N.V., Blagoveshchenskaya N.V., Melnik Y.I., Chuvildeyev V.N., Nokhrin A.V., Smirnov Ye.S., Shotin S.V., Levinsky Yu.V., Voldman G.M. Methods of compacting nanostructured tungsten–cobalt alloys from nanopowders obtained by plasma chemical synthesis. Inorganic materials: applied research, 2015, no. 5, pp. 415 – 426. (In Russ).
6. Yang Y., Zhang С., Wang D., Nie L., Wellmann D., Tian Y. Additive manufacturing of WC-Co hardmetals: a review. International Journal of Advanced Manufacturing Technology, 2020, v. 108, no. 5 – 6, pp. 1653-1673.
7. Aramian A., Razavi S. M. J., Sadeghian Z., Berto F. A review of additive manufacturing of cermets. Additive Manufacturing, 2020, v. 33. art. 101130.
8. Логачева А.И., Сентюрина Ж.А., Логачев И.А. Аддитивные технологии производства ответственных изделий из металлов и сплавов (обзор). Перспективные материалы, 2015. № 5, с. 5 – 15. / Logacheva A.I., Sentyurina Z.A., Logachev I.A. Additivnye tekhnologii proizvodstva otvetstvennyh izdelij iz metallov i splavov [Additive manufacturing technology responsible products from metals and alloys]. Perspektivnye materialy [Advanced materials], 2015, № 5, pp. 5 – 15. (In Russ).
9. Chen J., Huang M.J., Fang Z.Z., Koopman M., Liu W., Deng X., Zhao Z., Chen S.H., Wu S.H., Liu J.Y.,
Qi W.J., Wang Z.P. Microstructure analysis of high density WC-Co composite prepared by one step selective laser melting. International Journal of Refractory Metals & Hard Materials, 2019, v. 84. art. 104980.
10. Li С.W., Chang K.С., Yeh A.С. On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting. Journal of Alloys and Compounds, 2019, v. 782, pp. 440 – 450.
11. Gu D.D., Meiners W. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting. Materials Science and Engineering A. Structural Materials: Properties Microstructure and Processing, 2010, v. 527, no. 29 – 30, pp. 7585 – 7592.
12. Domashenkov A., Borbely A., Smurov I. Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting. Materials and Manufacturing Processes, 2017, v. 32, no. 1, pp. 93 – 100.
13. Fortunato A., Valli G., Liverani E., Ascari A. Additive manufacturing of WC-Co cutting tools for gear production. Lasers in Manufacturing and Materials Processing, 2019, v. 6, no. 3, pp. 247 – 262.
14. Khmyrov R.S., Shevchukov A.P., Gusarov A.V., Tarasova T.V. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting. Mechanics & Industry, 2017, v. 18, no. 7, art. 714.
15. Khmyrov R. S., Safronov V. A., Gusarov A. V. Obtaining crack-free WC-Co alloys by selective laser melting. Laser Assisted Net Shape Engineering (Lane 2016) — 9 International Conference on Photonic Technologies Proceedings of the. Physics Procedia, 2016, v. 83, pp. 874 – 881.
16. Grigoriev S., Tarasova T., Gusarov A., Khmyrov R., Egorov S. Possibilities of manufacturing products from cermet compositions using nanoscale powders by additive manufacturing methods. Materials, 2019, v. 12, no. 20, art. 3425.
17. Khmyrov R.S., Safronov V.A., Gusarov A.V. Synthesis of nanostructured WC – Co hardmetal by selective laser melting. Iutam Symposium on Growing Solids, June 23-27, 2015, Moscow, Russia. Procedia IUTAM, 2017, v. 23, pp. 114 – 119.
18. Uhlmann E., Bergmann A., Bolz R. Manufacturing of carbide tools by selective laser melting. 15th Global Conference on Sustainable Manufacturing (GCSM). Procedia Manufacturing, 2018, v. 21, pp. 765 – 773.
19. Bricin D., Kriz A. Processability of WC-Co powder mixtures using SLM additive technology. MM Science Journal, June 2019, pp. 2939 – 2945.
20. Uhlmann E., Bergmann A., Gridin W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting. 15th Machining Innovations Conference for Aerospace Industry (MIC). Germany, Garbsen, 2015. Procedia CIRP, 2015, v. 35, pp. 8 – 15.
21. Ku N., Pittari J.J., Kilczewski S., Kudzal A. Additive manufacturing of cemented tungsten carbide with a cobalt-free alloy binder by selective laser melting for high-hardness applications. JOM: the journal of the Minerals, Metals & Materials Society, 2019, v. 71, no. 4, pp. 1535 – 1542.
22. Campanelli S.L., Contuzzi N., Posa P., Angelastro A. Printability and microstructure of selective laser melting of WC/Co/Cr powder. Materials, 2019, v. 12, no. 15, art. 2397.
23. Padmakumar M. Additive manufacturing of tungsten carbide hardmetal parts by selective laser melting (SLM), selective laser sintering (SLS) and binder jet 3D printing (BJ3DP) techniques. Lasers Manuf. Mater. Process, 2020, v. 7, pp. 338 – 371.
24. Konyashin I., Hinners H., Ries B., Kirchner A., Kloden B., Kieback B., Nilen R. W. N., Sidorenko D. Additive manufacturing of WC-13%Co by selective electron beam melting: Achievements and challenges. International Journal of Refractory Metals & Hard Materials, 2019, v. 84, art. 105028.
25. Chen H.Y., Gu D.D., Kosiba K., Lu T.W., Deng L., Xi L.X., Kuhn U. Achieving high strength and high ductility in WC-reinforced iron-based composites by laser additive manufacturing. Additive Manufacturing, 2020, v. 35, art. 101195.
26. Mostafaei A., De Vecchis P.R., Kimes K.A., Elhassid D., Chmielus M. Effect of binder saturation and drying time on microstructure and resulting properties of sinter-HIP binder-jet 3D-printed WC-Co composites. Additive Manufacturing, 2021, v. 46, art. 102128.
27. Xu Z.K., Meenashisundaram G.K., Ng F.L. High-density WC-45Cr-18Ni cemented hard metal fabricated with binder jetting additive manufacturing. Virtual and Physical Prototyping, 2022, v. 17, no. 1, pp. 92 – 104.
28. Mariani M., Goncharov I., Mariani D., De Gaudenzi G. P., Popovich A., Lecis N., Vedani M. Mechanical and microstructural characterization of WC-Co consolidated by binder jetting additive manufacturing. International Journal of Refractory Metals & Hard Materials, 2021, v. 100, art. 105639.
29. Cramer С.L., Wieber N.R., Aguirre T.G., Lowden R.A., Elliott A.M. Shape retention and infiltration height in complex WC-Co parts made via binder jet of WC with subsequent Co melt infiltration. Additive Manufacturing, 2019, v. 29, art. 100828.
30. Cramer С.L., Nandwana P., Lowden R.A., Elliott A.M. Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method. Additive Manufacturing, 2019, v. 28, pp. 333 – 343.
31. Enneti R.K., Prough K.С., Wolfe T.A., Klein A., Studley N., Trasorras J.L. Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology. International Journal of Refractory Metals & Hard Materials, 2018, v. 71, pp. 28 – 35.
32. Enneti R.K., Prough K.С. Wear properties of sintered WC-12%Co processed via binder jet 3D printing (BJ3DP). International Journal of Refractory Metals & Hard Materials, 2019, v. 78, pp. 228 – 232.
33. Lengauer W., Duretek I., Fuerst M., Schwarz V., Gonzalez-Gutierrez J., Schuschnigg S., Kukla С., Kitzmantel M., Neubauer E., Lieberwirth С., Morrison V. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. International Journal of Refractory Metals & Hard Materials, 2019, v. 82, pp. 141 – 149.
34. Carreno-Morelli E., Alveen P., Moseley S., Rodriguez-Arbaizar M., Cardoso K. Three-dimensional printing of hard materials. International Journal of Refractory Metals & Hard Materials, 2020, v. 87, art. 105110.
35. Zhang X.Y., Guo Z.M., Chen С.G., Yang W.W. Additive manufacturing of WC-20Co components by 3D gel-printing. International Journal of Refractory Metals & Hard Materials, 2018, v. 70, pp. 215 – 223.
36. Kim H., Kim J. I., Ryu S.S., Jeong H. Cast WC-Co alloy-based tool manufacturing using a polymeric mold prepared via digital light processing 3D printing. Materials Letters, 2022, v. 306, art. 130979.
37. Zhao Z.С., Li X.H., Zhang Y., He С.W., Zhang X.X., Liu H.Y., Yan Q.Z. Fabrication and mechanical properties of large-scale SiC impeller via vacuum gelcasting and pressureless sintering. International Journal of Applied Ceramic Technology, 2020, v. 17, no. 4, pp. 1713 – 1722.
38. Liu K., Zhou С.Y., Chen F.J., Sun H.J., Zhang K. Fabrication of complicated ceramic parts by gelcasting based on additive manufactured acetone-soluble plastic mold. Ceramics International, 2020, v. 46, no. 16, pp. 25220 – 25229.
39. Montanaro L., Coppola B., Palmero P., Tulliani J.M. A review on aqueous gelcasting: A versatile and low-toxic technique to shape ceramics. Ceramics International, 2019, v. 45, no. 7, pp. 9653 – 9673.
40. Chen F.J., Liu K., Sun H.J., Shui Z.H., Liu С., Chen J.Q., Shi Y.S. Fabrication of complicated silicon carbide ceramic components using combined 3D printing with gelcasting. Ceramics International, 2018, v. 44, no. 1, pp. 254 – 260.
41. Hong J.H., Yu T., Chen Z.X., Park S.J., Kim Y.H. Improvement of flexural strength and compressive strength by heat treatment of PLA filament for 3D-printing. Modern Physics Letters B, 2019, v. 33, no. 14 – 15, art. 1940025.
42. Zhang L., Hu С., Yang Y., Misra R., Kondoh K., Lu Y. Laser powder bed fusion of cemented carbides by developing a new type of Co coated WC composite powder. Additive Manufacturing, 2022, v. 55, art. 102820.
43. Maurya H., Kosiba K., Juhani K., Sergejev F., Prashanth K. Effect of powder bed preheating on the crack formation and microstructure in ceramic matrix composites fabricated by laser powder-bed fusion process. Additive Manufacturing, 2022, v. 58,
art. 103013.