1. Страумал Б.Б., Горнакова А.С., Кильмаметов А.Р., Рабкин Е., Анисимова Н.Ю., Киселевский М.В. Сплавы для медицинских применений на основе β-титана. Известия вузов. Цветная металлургия, 2020, № 6, c. 52 – 64. DOI: dx.doi.org/10.17073/0021-3438-2020-6-52-64. / Straumal B.B., Gornakova A.S., Kilmametov A.R., Rabkin E., Anisimova N.Yu., Kiselevsky M.V. Splavy dlya medicinskih primenenij na osnove β-titana [β-Ti-based alloys for medical applications]. Izvestiya vuzov. Cvetnaya metallurgiya [Izvestiya vysshikh uchebnykh zavedeny. Non-Ferrous Metallurgy], 2020, no. 6, pp. 52 – 64. (In Russ.) DOI: dx.doi.org/10.17073/0021-3438-2020-6-52-64.
2. Baltatu I, Sandu A.V., Vlad M.D., Spataru M.C., Vizureanu P., Baltatu M.S. Mechanical characterization and in vitro assay of biocompatible titanium alloys. Micromachines (Basel), 2022, v. 13, no. 3, art. 430. DOI: 10.3390/mi13030430.
3. Капитанова В.К., Петрова Н.Э., Жданова М.Ю., Невская Л.В. Аллергия на металлы. БИОпрепараты. Профилактика, диагностика, лечение, 2019, т. 19, № 2, с. 88 – 93. https://doi.org/10.30895/2221-996X- 2019-19-2-88-93. / Kapitanova V.K., Petrova N.E., Zhdanova M.YU., Nevskaya L.V. Allergiya na metally [Metal allergy]. BIOpreparaty. Profilaktika, diagnostika, lechenie [BIOpreparations. Prevention, Diagnosis, Treatment]. 2019, v. 19, no. 2, pp. 88 – 93. (In Russ.). https://doi.org/10.30895/2221-996X-2019-19-2-88-93.
4. Bandyopadhyay A., Mitra I., Goodman S.B., Kumar M., Bose S. Improving biocompatibility for next generation of metallic implants. Prog. Mater. Sci., 2023, v. 133, art. 101053. DOI: 10.1016/j.pmatsci.2022.101053
5. Zhang E., Zhao X., Hu J., Wang R., Fu S., Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioactive materials, 2021, v. 6, no. 8, pp. 2569 – 2612. DOI: 10.1016/j.bioactmat.2021.01.030.
6. Rony L., Lancigu R., Hubert L. Intraosseous metal implants in orthopedics: A review Morphologie, 2018, v. 102, no. 339, pp. 231 – 242. DOI: 10.1016/j.morpho.2018.09.003.
7. Yuying Yang, Yadong Gong, Shuoshuo Qu, Hualong Xie, Ming Cai, Yunchao Xu. Densification, mechanical behaviors, and machining characteristics of 316L stainless steel in hybrid additive/subtractive manufacturing. The International Journal of Advanced Manufacturing Technology, 2020, v. 107, pp. 177 – 189.
8. Kiradzhiyska D.D., Mantcheva R.D. Overview of biocompatible materials and their use in medicine. Folia Med (Plovdiv), 2019, v. 61, no. 1, pp. 34 – 40. DOI: 10.2478/folmed-2018-0038.
9. Han X., Sawada T., Schille C., Schweizer E., Scheideler L., Geis-Gerstorfer J., Rupp F., Spintzyk S. Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes. Materials, 2018, v. 11, № 10, art. 1801. DOI: 10.3390/ma11101801.
10. Grosgogeat B., Vaicelyte A., Gauthier R., Janssen C., Le Borgne M. Toxicological risks of the cobalt–chromium alloys in dentistry: A systematic review. Materials, 2022, v. 15, no. 17, art. 5801. DOI: 10.3390/ma15175801.
11. Manivasagam G., Dhinasekaran D., Rajamanickam A. Biomedical implants: corrosion and its prevention-a review. Recent Patents on Corrosion Science, 2010, v. 2, no. 1, pp. 40 – 54. DOI: 10.2174/1877610801002010040.
12. Costa B.C., Tokuhara C.K., Rocha L.A., Oliveira R.C., Lisboa-Filho P.N., Costa Pessoa J. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. Materials Science and Engineering, 2019, no. 96, pp. 730 – 739. DOI: 10.1016/j.msec.2018.11.090.
13. Coulson J.M., Hughes B.W. Dose-response relationships in aluminium toxicity in humans. Clinical Toxicology, 2022, v. 60, no. 4, pp. 415 – 428. DOI: 10.1080/15563650.2022.2029879.
14. Гузеев В.В., Гузеева Т.И., Гурова О.А. и др. Способ нанесения биоактивного покрытия на титановые имплантаты. Патент РФ № 2684617 C1. Заявл. 11.07.2018. Опубл. 10.04.2019. / Guzeev V.V., Guzeeva T.I., Gurova O.A. et al. Sposob naneseniya bioaktivnogo pokrytiya na titanovye implantaty [A method for applying a bioactive coating to titanium implants]. Patent of RF No. 2684617 C1. Declared 11.07.2018. Published 10.04.2019. (In Russ.).
15. Долгалев А.А., Зеленский В.А., Зеленский В.И., Долгалева А.А. Способ изготовления имплантатов различной конфигурации из сплава марки ВТ-6 с алмазоподобным диэлектрическим защитным нанопокрытием. Патент РФ № 2713210 C1. Заявл. 10.01.2019. Опубл. 04.02.2020. / Dolgalev A.A., Zelensky V.A., Zelensky V.I., Dolgaleva A.A. Sposob izgotovleniya implantatov razlichnoj konfiguracii iz splava marki VT-6 s almazopodobnym dielektricheskim zashchitnym nanopokrytiem [A method for manufacturing implants of various configurations from a VT-6 alloy with a diamond-like dielectric protective nanocoating]. Patent of RF No. 2713210 C1. Declared 10.01.2019. Published 04.02.2020. (In Russ.).
16. Зеленский В.И., Долгалев А.А., Елдашев Д.С.А., Ешкулов У.Э. Исследование наноструктурированных поверхностей имплантатов сплава ВТ-6 in vivo. Медицинский алфавит, 2020, № 12, с. 12 – 14. DOI: 10.33667/2078-5631-2020-12-12-14. / Zelenskiy V.I., Dolgalev A.A., Eldashev D.S.-A., Eshkulov U.E. Issledovanie nanostrukturirovannyh poverhnostej implantatov splava VT-6 in vivo [Research of nanostructured surfaces of alloys implants VT-6 in vivo]. Medicinskij alfavit [Medical Alphabet], 2020, no. 12, pp. 12 – 14. (In Russ.). https://doi.org/10.33667/2078-5631-2020-12-12-14.
17. Topolnitskiy E.B., Shefer N.A., Marchenko E.S., Fomina T.I., Mikhed R.A., Tsydenova А.N., Garin A.S. Features of the integration of two-layer metal knitwear made of titanium nickelide during the replacement of a thoracoabdominal defect in the experiment. Acta Biomedica Scientifica, 2023, v. 8, no. 2, pp. 244 – 253. DOI: 10.29413/ABS.2023-8.2.24.
18. Kokorev O.V., Marchenko E.S., Khlusov I.A., Yasenchuk Y.F., Monogenov A.N. Engineered fibrous NiTi scaffolds with cultured hepatocytes for liver regeneration in rats. ACS Biomaterials Science and Engineering, 2023, v. 9, no. 3, pp. 1558 – 1569. DOI: 10.1021/acsbiomaterials.2c01268.
19. Marchenko E., Kozulin A., Yasenchuk Y., Vetrova A., Volinsky A., Zhang Y. Numerical and experimental study of porous NiTi anisotropy under compression. Journal of Materials Research and Technology, 2023, v. 22,
pp. 3502 – 3510. DOI: 10.1016/j.jmrt.2022.12.168.
20. Marchenko E., Baigonakova G., Dubovikov K., Kokorev O., Yasenchuk Yu., Vorozhtsov A. In vitro bio-testing comparative analysis of NiTi porous alloys modified by heat treatment. Metals, 2022, v. 10, art. 1006. DOI: 10.3390/met12061006.
21. Kokorev O.V., Marchenko E.S., Yasenchuk Yu.F., Khlusov I.A. Experimental correction of homeostasis changes during alloxan-induced diabetes by implantation of islet cells cultured in fibrous TiNi-based scaffold. Bulletin of Experimental Biology and Medicine, 2022, v. 174, no. 7, pp. 89 ‒ 94. DOI: 10.1007/s10517-022-05654-5.
22. Daley B., Doherty A.T., Fairman B., Case C.P. Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J. Bone Joint Surg. Br., 2004, v. 86, no. 4, pp. 598 – 606.
23. Насакина Е.О., Баикин А.С., Сергиенко К.В., Севостьянов М.А., Колмаков А.Г., Гончаренко Б.А., Заболотный В.Т., Фадеев Р.С., Фадеева И.С., Гудков С.В., Солнцев, К.А. Биосовместимость наноструктурного нитинола с поверхностными композиционными слоями из титана или тантала, сформированными методом магнетронного напыления. Доклады Академии Наук, 2015, т. 461, № 1, с. 49 – 52. https://doi.org/10.7868/s0869565215070142. / Nasakina E.O., Baikin A.S., Sergienko K.V., Sevostyanov M.A., Kolmakov A.G., Goncharenko B.A., Zabolotny V.T., Fadeev R.S., Fadeeva I.S., Gudkov S.V., Solntsev K.A. Biocompatibility of nanostructured nitinol with titanium or tantalum surface composite layers formed by magnetron sputtering. Doklady Chemistry, 2015, v. 461, no. 1. pp. 86 – 88. https://doi.org/10.1134/S0012500815030027.
24. Nasakina E.O., Sudarchikova M.A., Demin K.Y., Mikhailova A.B., Sergienko K.V., Konushkin S.V., Kaplan M.A., Baikin A.S., Sevostyanov M.A., Kolmakov A.G. Study of co-deposition of tantalum and titanium during the formation of layered composite materials by magnetron sputtering. Coatings, 2023, v. 13, art. 114. https://doi.org/10.3390/coatings13010114.
25. Marchenko E.S., Baigonakova G.A., Dubovikov K.M., Kokorev O.V., Gordienko I.I., Chudinova E.A. Properties of coatings based on calcium phosphate and their effect on cytocompatibility and bioactivity of titanium nickelide. Materials, 2023, v. 16, art. 2581. DOI: 10.3390/ma16072581.
26. Vikulova E.S., Karakovskaya K.I., Korolkov I.V., Zheravin A.A., Morozova N.B. Application of biocompatible noble metal film materials to medical implants: TiNi surface modification. Coatings, 2023, v. 13, no. 2, art. 222.
27. Baigonakova G.A., Marchenko E.S., Yasenchuk Yu.F., Kokorev O.V., Vorozhtsov A.B., Kulbakin D.E. Microstructural characterization, wettability and cytocompatibility of gradient coatings synthesized by gas nitriding of three-layer Ti/Ni/Ti nanolaminates magnetron sputtered on the TiNi substrate. Surface and Coatings Technology, 2022, v. 436, art. 128291. DOI: 10.1016/j.surfcoat.2022.128291.
28. Marchenko E., Baigonakova G., Kokorev O., Yasenchuk Y., Vorozhtsov A. Biocompatibility assessment of coatings obtained in argon and nitrogen atmospheres for TiNi materials. Metals, 2022, v. 12, art. 1603. https://doi.org/10.3390/met12101603
29. Elias L.M., Schneider S.G., Schneider S. et al. Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Materials Science and Engineering, 2006, v. 432, pp. 108 – 112. doi:10.1016/j.msea.2006.06.013.
30. Конушкин С.В., Колмаков А.Г., Насакина Е.О., Сергиенко К.В., Севостьянов М.А. Получение сплава Ti-20Nb-5Ta, % (ат.), в аргонодуговой плавильной печи. Электрометаллургия, 2022, № 5, c. 2 – 7. doi: 10.31044/1684-5781-2022-0-5-2-7. / Konushkin S.V., Kolmakov A.G., Nasakina E.O., Sergienko K.V., Sevostyanov M.A. Poluchenie splava Ti-20Nb-5Ta, % (at.), v argonodugovoj plavil’noj pechi [Increasing the content of Ti-20Nb-5Ta, % (at.), in the argon-arc furnace mixture]. Elektrometallurgiya [Electrotallurgy], 2022, no. 5, pp. 2 – 7. (In Russ.). doi: 10.31044/1684-5781-2022-0-5-2-7.
31. Насакина Е.О., Сударчикова М.А., Баикин А.С., Мельникова А.А., Демин К.Ю., Дормидонтов Н.А., Прокофьев П.А., Конушкин С.В., Сергиенко К.В., Каплан М.А., Севостьянов М.А., Колмаков А.Г. Формирование слоистых композиционных материалов CeO2-TiNbTaZr медицинского назначения методом магнетронного распыления. Деформация и разрушение материалов, 2023, № 12, c. 25 – 29. DOI: 10.31044/1814-4632-2023-12-25-29. / Nasakina E.O., Sudarchikova M.A., Baikin A.S., Melnikova A.A., Demin K.Yu., Dormidontov N.A., Prokofiev P.A., Konushkin S.V., Sergienko K.V., Kaplan M.A., Sevostyanov M.A., Kolmakov A.G. Formirovanie sloistyh kompozicionnyh materialov CeO2-TiNbTaZr medicinskogo naznacheniya metodom magnetronnogo raspyleniya [Formation of layered composite materials CeO2-TiNbTaZr for medical purposes by the magnetron sputtering method]. Deformaciya i razrushenie materialov. [Deformation and Destruction of Materials], 2023, no. 12, pp. 25 – 29. (In Russ.). DOI: 10.31044/1814-4632-2023-12-25-29.
32. Noyama Y., Miura T., Ishimoto T., Itaya T., Niinomi M., Nakano T. Bone loss and reduced bone quality of the human femur after total hip arthroplasty under stress-shielding effects by titanium-based implant. Materials Transactions, 2012, v. 53, no. 3, pp. 565 – 570. doi:10.2320/matertrans.m2011358.
33. Fakhardo A.F., Anastasova E.I., Gabdullina S.R., Solovyeva A.S., Saparova V.B., Chrishtop V.V., Koshevaya E.D., Krivoshapkina E.F., Krivoshapkin P.V., Kiselev G.O., Kalikina P.A., Koshel E.I., Shtil A.A., Vinogradov V.V. Toxicity patterns of clinically relevant metal oxide nanoparticles. ACS Appl. Bio Mater., 2019, v. 2, no. 10, pp. 4427 – 4435. doi: 10.1021/acsabm.9b00615.
34. Ying-Long Zhou, Mitsuo Niinomi. Ti–25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Materials Science and Engineering, 2009, no. 29, pp. 1061 – 1065.
35. Levine B.R., Sporer S., Poggie R.A., Valle C.J.D., Jacobs J.J. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials, 2006, no. 27, pp. 4671 – 4681.
36. Li Nie, Yongzhong Zhan, Tong Hu, Xiaoxian Chen, Chenghui Wang. β-Type Zr–Nb–Ti biomedical materials with high plasticity and low modulus for hard tissue replacements. Journal of the Mechanical Behavior of Biomedical Materials, 2014, no. 29, pp. 1 – 6.
37. Mingxing Qi, Bohan Chen, Chaoqun Xia, Yu Liu, Shuguang Liu, Hua Zhong, Xianrui Zou, Tai Yang, Qiang Li Microstructure, mechanical properties and biocompatibility of novel Ti-20Zr-xMo alloys. Journal of Alloys and Compounds, 2021, v. 888, no. 6, art. 161478. https://doi.org/10.1016/j.jallcom.2021.161478.
38. Hulka I., Mirza-Rosca J.C., Buzdugan D., Saceleanu A. Microstructure and mechanical characteristics of Ti-Ta alloys before and after NaOH treatment and their behavior in simulated body fluid. Materials, 2023, v. 16, no. 5, art. 1943. DOI:10.3390/ma16051943.
39. Biesiekierski A., Ping D., Li Y., Lin J., Munir K.S., Yamabe-Mitarai Y., Wen C. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement. Acta Biomaterialia, 2017, no. 53, pp. 549 – 558.
40. Angelescu R.M. Răducanu D., Cojocaru V.D., Angelescu M.L. et al. Microstructural and mechanical evaluation of a Ti-Nb-Ta alloy. Univ. Politeh. Buchar. Sci. Bull. Ser. B - Chem. Mater. Sci., 2015, v. 77, pp. 221 – 228.
41. Hoppe V., Szymczyk-Ziółkowska P., Rusińska M., Dybała B., Poradowski D., Janeczek M. Assessment of mechanical, chemical, and biological properties of Ti-Nb-Zr alloy for medical applications. Materials (Basel), 2020, v. 14, no. 1, art. 126. doi: 10.3390/ma14010126.
42. You L. A study of low Young’s modulus Ti-Nb-Zr alloys using d electrons alloy theory. Scripta Materialia, 2012, v. 67, no. 1:57, pp. 57 – 60. DOI:10.1016/j.scriptamat.2012.03.020.