1. Cevallos J.G., Bergles A.E., Bar-Cohen A., Rodgers P., Gupta S. Polymer heat exchangers — history, opportunities, and challenges. Heat Transfer Engineering, 2012, v. 33, no. 13, pp. 1075 –1093.
2. Vadivelu M.A., Kumar C.R., Joshi G.M. Polymer composites for thermal management: a review. Composite Interfaces, 2016, v. 23, no. 9, pp. 847 – 872.
3. Porstmann S., Wannemacher T., Drossel W.G. A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends. Journal of Manufacturing Processes, 2020, v. 60, pp. 366 – 383.
4. Li X., Sabir I. Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 2005, v. 30, no. 4, pp. 359 – 371.
5. Zhang X., Shen L., Xia X., Wang H., Du Q. Study on the interface of phenolic resin/expanded graphite composites prepared via in situ polymerization. Materials Chemistry and Physics, 2008, v. 111, no. 2 – 3, pp. 368 – 374.
6. Yin Q., Li A.J., Wang W.Q., Xia L.G., Wang Y.M. Study on the electrical and mechanical properties of phenol formaldehyde resin/graphite composite for bipolar plate. Journal of Power Sources, 2007, v. 165, no. 2, pp. 717 – 721.
7. Hui C., Liu H.B., Li J.X., Li Y., He Y.D. Characteristics and preparation of polymer/graphite composite bipolar plate for PEM fuel cells. Journal of Composite Materials, 2009, v. 43, no. 7, pp. 755 – 767.
8. Dhakate S.R., Sharma S., Borah M., Mathur R.B., Dhami T.L. Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell. International Journal of Hydrogen Energy, 2008, v. 33, no. 23, pp. 7146 – 7152.
9. Roncaglia F., Romagnoli M., Incudini S. et al. Graphite-epoxy composites for fuel-cell bipolar plates: Wet vs dry mixing and role of the design of experiment in the optimization of molding parameters. International Journal of Hydrogen Energy, 2021, v. 46, no. 5, pp. 4407 – 4416.
10. Kakati B.K., Sathiyamoorthy D., Verma A. Electrochemical and mechanical behavior of carbon composite bipolar plate for fuel cell. International Journal of Hydrogen Energy, 2010, v. 35, no. 9, pp. 4185 – 4194.
11. Naji A., Krause B., Pötschke P., Ameli A. Hybrid conductive filler/polycarbonate composites with enhanced electrical and thermal conductivities for bipolar plate applications. Polymer Composites, 2019, v. 40, no. 8, pp. 3189 – 3198.
12. Lee J.H., Jang Y.K., Hong C.E. et al. Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. Journal of Power Sources, 2009, v. 193, no. 2, pp. 523 – 529.
13. Нефедкин С.И., Иваненко А.В., Павлов В.И. и др. Разработка водород-воздушных топливных элементов с открытым катодом для энергосистемы с высокими удельными характеристиками. Электрохимия, 2022, т. 58, № 3, с. 103 – 115. / Nefedkin S.I., Ivanenko A.V., Pavlov V.I. et al. Razrabotka vodorod-vozdushnykh toplivnykh elementov s otkrytym katodom dlya energosistemy s vysokimi udelnymi kharakteristikami [Development of hydrogen-air fuel cells with an open cathode for power systems with constant specific work]. Elektrokhimiya [Electrochemistry], 2002, v. 58, no. 3, pp. 103 – 115. (In Russ.).
14. Danilov E.A., Samoilov V.M., Kaplan I.M. et al. Excellent thermal and dielectric properties of hexagonal boron nitride/phenolic resin bulk composite material for heatsink applications. Journal of Composites Science, 2023, v. 7, no. 7, art. 291.
15. Antunes R.A., De Oliveira M.C.L., Ett G. et al. Investigation on the corrosion resistance of carbon black–graphite-poly (vinylidene fluoride) composite bipolar plates for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2011, v. 36, no. 19, pp. 12474 – 12485.
16. Shojaeenezhad S.S., Farbod M., Kazeminezhad I. Effects of initial graphite particle size and shape on oxidation time in graphene oxide prepared by Hummers’ method. Journal of Science: Advanced Materials and Devices, 2017, v. 2, no. 4, pp. 470 – 475.
17. Ender M., Joos J., Weber A., Ivers-Tiffée E. Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography. Journal of Power Sources, 2014, v. 269, pp. 912 – 919.
18. Molina J.M., Narciso J., Weber L., Mortensen, A., Louis E. Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution. Materials Science and Engineering: A, 2008, v. 480, no. 1 – 2, pp. 483 – 488.
19. Aghajan M.H., Hosseini S.M., Razzaghi-Kashani M. Particle packing in bimodal size carbon black mixtures and its effect on the properties of styrene-butadiene rubber compounds. Polymer Testing, 2019, v. 78, art. 106002.
20. Mujtaba A., Keller M., Ilisch S. et al. Mechanical properties and cross-link density of styrene–butadiene model composites containing fillers with bimodal particle size distribution. Macromolecules, 2012, v. 45, no. 16, pp. 6504 – 6515.
21. Zheng J., Peng Y., Fan R. et al. Study on carbon matrix composite bipolar plates with balance of conductivity and flexural strength. Chinese Chemical Letters, 2023, v. 34, no. 5, art. 107616.
22. Самойлов В.М., Данилов Е.А., Каплан И.М., Лебедева М.В., Яштулов Н.А. Теплопроводность полимерного композиционного материала на основе фенолформальдегидной смолы и нитрида бора. Известия вузов. Физика, 2022, т. 65, № 1, с. 72 – 81. / Samoilov V.M., Danilov E.A., Kaplan I.M., Lebedeva M.V., Yashtulov N.A. Thermal conductivity of polymer composite material based on phenol-formaldehyde resin and boron nitride. Russian Physics Journal, 2022, v. 65, no. 1, pp. 80 – 90.
23. Butland A.T.D., Maddison R.J. The specific heat of graphite: An evaluation of measurements. Journal of Nuclear Materials, 1973, v. 49, no. 1, pp. 45 – 56.
24. Erä V.A., Mattila A., Lindberg J.J. Determination of specific heat of phenol formaldehyde resol resins by differential scanning calorimetry. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1977, v. 64, no. 1, pp. 235 – 238.
25. Henderson J.B., Emmerich W.D., Wassmer E. Measurement of the specific heat and heat of decomposition of a polymer composite to high temperatures. Journal of Thermal Analysis, 1988, v. 33, pp. 1067 – 1077.
26. Albarbar A., Alrweq M., Albarbar A., Alrweq M. Proton exchange membrane fuel cells. Proton Exchange Membrane Fuel Cells: Design, Modelling and Performance Assessment Techniques, 2018, pp. 9 – 29.
27. Agari Y., Uno T. Estimation on thermal conductivities of filled polymers. Journal of Applied Polymer Science, 1986, v. 32, no. 7, pp. 5705 – 5712.
28. Du L. Highly conductive epoxy/graphite polymer composite bipolar plates in proton exchange membrane (PEM) fuel cells: дис., University of Akron, 2008.
29. Hu B., Chen L., Guo C. et al. Constructing three-dimensional conductive network in composite bipolar plates by sacrificial materials for improvement of proton exchange membrane fuel cell performance. Journal of Power Sources, 2022, v. 552, art. 232261.
30. Witpathomwong S., Okhawilai M., Jubsilp C., Karagiannidis P., Rimdusit S. Highly filled graphite/graphene/carbon nanotube in polybenzoxazine composites for bipolar plate in PEMFC. International Journal of Hydrogen Energy, 2020, v. 45, no. 55, pp. 30898 – 30910.
31. Magampa P.P., Manyala N., Focke W.W. Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder. Journal of Nuclear Materials, 2013, v. 436, no. 1-3, pp. 76 – 83.
32. Mokhena T.C., Mochane M.J., Sefadi J.S., Motloung S.V., Andala D.M. Thermal conductivity of graphite-based polymer composites. In Book: Impact of Thermal Conductivity on Energy Technologies, 2018, pp. 181 – 197.
33. Kakati B.K., Yamsani V.K., Dhathathreyan K.S., Sathiyamoorthy D., Verma A. The electrical conductivity of a composite bipolar plate for fuel cell applications. Carbon, 2009, v. 47, no. 10, pp. 2413 – 2418.
34. Bhlapibul S., Pruksathorn K. Preparation of graphite composite bipolar plate for PEMFC. Korean Journal of Chemical Engineering, 2008, v. 25, pp. 1226 – 1231.
35. Ramachandran A.A., Mathew L.P., Thomas S. Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: New strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. European Polymer Journal, 2019, v. 118, pp. 595 – 605.
36. Zhao X., Wang H., Fu Z. Enhanced interfacial adhesion by reactive carbon nanotubes: new route to high-performance immiscible polymer blend nanocomposites with simultaneously enhanced toughness, tensile strength, and electrical conductivity. ACS Applied Materials & Interfaces, 2018, v. 10, no. 10, pp. 8411 – 8416.
37. Moghri M., Garmabi H., Zanjanijam A.R. Prediction of barrier properties of HDPE/PA-6/nanoclay composites by response surface approach: effects of compatibilizer type and the contents of nanoclay, PA-6 and compatibilizer. Polymer Bulletin, 2018, v. 75, pp. 2751 – 2767.
38. Li X., Huang K., Wang X. et al. Effect of montmorillonite on morphology, rheology, and properties of a poly [styrene–(ethylene-co-butylene)–styrene]/poly (ɛ-caprolactone) nanocomposite. Journal of Materials Science, 2018, v. 53, pp. 1191 – 1203.
39. Matsubara H., Yamaguchi Y., Shioya J., Murakami S. Preparation and properties of graphite grown in vapor phase. Synthetic Metals, 1987, v. 18, no. 1 – 3, pp. 503 – 507.
40. Alazemi M., Dutta I., Wang F., Blunk R.H., Angelopoulos A.P. Electrically conductive thin films prepared from layer‐by‐layer assembly of graphite platelets. Advanced Functional Materials, 2009, v. 19, no. 7, pp. 1118 – 1129.
41. Katoh Y., Kondo S., Snead L.L. DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications. Journal of Nuclear Materials, 2009, v. 386, pp. 639 – 642.
42. Miller E. L. Papageorgopoulos D., Stetson N. et al. US Department of energy hydrogen and fuel cells program: progress, challenges and future directions. MRS Advances, 2016, v. 1, no. 42, pp. 2839 – 2855.
43. Sheikh-Ahmad J. Y. Machining of polymer composites. New York : Springer, 2009, 316 p.
44. Ma H., Wei G., Liu Y. et al. Effect of elastomeric nanoparticles on properties of phenolic resin. Polymer, 2005, v. 46, no. 23, pp. 10568 – 10573.