1. Rae P.J., Dattelbaum D.M. The properties of poly (tetrafluoroethylene) (PTFE) in compression. Polymer, 2004, v. 45, no. 22, pp. 7615 – 7625.
2. Speerschneider C.J., Li C.H. A correlation of mechanical properties and microstructure of polytetrafluoroethylene at various temperatures. Journal of Applied Physics, 1963, v. 34, no. 10, pp. 3004 – 3007.
3. Deshwal D., Belgamwar S.U., Bekinal S.I., Doddamani M. Role of reinforcement on the tribological properties of polytetrafluoroethylene composites: A comprehensive review. Polymer Composites, 2024, v. 45, no. 16, pp. 14475 – 14497.
4. Madhan K., Padmanaban R., Venkatesh G. Formulation and numerical investigation of PTFE-based composites for piston rings of oil free air compressors. Recent Advances in Materials Technologies: Select Proceedings of ICEMT 2021, 2022, pp. 87 – 98.
5. Yin M.H., Zhang Y.C., Zhou R. M. et al. Friction mechanism and application of PTFE coating in finger seals. Tribology Transactions, 2022, v. 65, no. 2, pp. 260 – 269.
6. Guo Q., Huang Y., Xu M. et al. PTFE porous membrane technology: A comprehensive review. Journal of Membrane Science, 2022, v. 664, art. 121115.
7. Gong H., Yu C., Zhang L. et al. Intelligent lubricating materials: A review. Composites Part B: Engineering, 2020, v. 202, art. 108450.
8. Shiv J.K., Kumar K., Jayapalan S. Recent advances in polymer using metal oxides nanocomposite and its hybrid fillers for tribological application. Advances in Materials and Processing Technologies, 2023, v. 10, no. 6, pp. 1 – 12.
9. Khamis A.M., Abbas Z., Azis R.A.S. et al. Effects of recycled Fe2O3 nanofiller on the structural, thermal, mechanical, dielectric, and magnetic properties of ptfe matrix. Polymers, 2021, v. 13, no. 14, art. 2332.
10. Khan A., Puttegowda M., Jagadeesh P. et al. Review on nitride compounds and its polymer composites: a multifunctional material. Journal of Materials Research and Technology, 2022, v. 18, pp. 2175 - 2193.
11. Shahramforouz F., Hejazi S.M., Taherizadeh A. Evaluating the tribological and mechanical properties of filament wound composite incorporated with PTFE fibers and tungsten carbide filler applicable for self-lubricating bearings. Surface Topography: Metrology and Properties, 2021, v. 9, no. 3, art. 035039.
12. Ullah S., Haque F.M., Sidebottom M.A. Maintaining low friction coefficient and ultralow wear in metal-filled PTFE composites. Wear, 2022, v. 498, art. 204338.
13. Yan F.Y., Xue Q.J., Wang X. Tribological action of metallic fillers in poly (tetrafluoroethylene) composites. Journal of applied polymer science, 2002, v. 83, no. 9, pp. 1832 - 1840.
14. Мазитова А.К., Зарипов И.И., Аминова Г.К. и др. Наполнители для полимерных композиционных материалов. Нанотехнологии в строительстве: научный интернет-журнал, 2022, т. 14, № 4, с. 294 − 299. / Mazitova A.K., Zaripov I.I., Aminova G.K. et al. Napolniteli dlya polimernyh kompozicionnyh materialov [Fillers for polymer composite materials]. Nanotekhnologii v stroitel’stve: nauchnyj internet-zhurnal [Nanotechnology in construction: a scientific online magazine], 2022, v. 14, no. 4. pp. 294 − 299. (In Russ.).
15. Vishal K., Rajkumar K., Sabarinathan P. Effect of recovered silicon filler inclusion on mechanical and tribological properties of polytetrafluoroethylene (PTFE) composite. Silicon, 2022, v. 14, no. 9, pp. 4601 – 4610.
16. Sugonyako D.V., Zenitova L.A. Polymer compounds and nanocompounds based on silica. Butlerov Communications, 2015, v. 43, no. 9, pp. 78 – 83.
17. Завьялов А., Брусенцева Т., Викулина Л. и др. Взаимодействие наночастиц диоксида кремния с полимерами. Наноиндустрия, 2013, № 1, с. 32 – 37. / Zavyalov А., Brusenceva T., Vikulina L. et al. Vzaimodejstvie nanochastic dioksida kremniya s polimerami [The interaction of silica nanoparticles with polymers]. Nanoindustriya [Nanoindustry], 2013, v. 39, no. 1, pp. 32 – 37. (In Russ.).
18. Snyder L.R., Ward J.W. The surface structure of porous silicas. The Journal of Physical Chemistry, 1966, v. 70, no. 12, pp. 3941 – 3952.
19. Nawrocki J. The silanol group and its role in liquid chromatography. Journal of Chromatography A, 1997, v. 779, no. 1–2, pp. 29 – 71.
20. Yeap S.P. Permanent agglomerates in powdered nanoparticles: Formation and future prospects. Powder Technology, 2018, v. 323, pp. 51 – 59.
21. Yao W., Guangsheng G., Fei W., Jun W. Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technology, 2002, v. 124, no. 1–2, pp. 152 – 159.
22. Lin J., Chen H., Yao L. Surface tailoring of SiO2 nanoparticles by mechanochemical method based on simple milling. Applied Surface Science, 2010, v. 256, no. 20, pp. 5978 – 5984.
23. Hua D., Tang J., Jiang J., Gu Z., Dai L., Zhu X. Controlled grafting modification of silica gel via RAFT polymerization under ultrasonic irradiation. Materials Chemistry and Physics, 2009, v. 114, no. 1, pp. 402 – 406.
24. Thissen P., Seitz O., Chabal Y.J. Wet chemical surface functionalization of oxide-free silicon. Progress in Surface Science, 2012, v. 87, no. 9 – 12, pp. 272 – 290.
25. Слепцова С.А., Лазарева Н.Н., Федосеева В.И., Капитонова Ю.В., Охлопкова А.А. Влияние катионов металлов механоактивированного бентонита на трибохимические процессы в ПТФЭ. Трение иизнос, 2018, т. 39, № 6, с. 604 – 611. / Sleptsova S.A., Lazareva N.N., Fedoseeva V.I. et al. The influence of metal cations of mechanoactivated bentonite on tribochemical processes in PTFE. Journal of Friction and Wear, 2018, v. 39, pp. 469 − 475.
26. Фомина Е.В., Кожухова Н.И., Пальшина Ю.В., Строкова В.В., Фомин А.Е. Влияние механоактивации на размерные параметры алюмосиликатных пород. Строительные материалы, 2014, № 10, с. 28 − 33. / Fomina E.V., Kozhukhova N.I., Strokova V.V., Fomin A.E. Vliyanie mekhanoaktivacii na razmernye parametry alyumosilikatnyh porod [Effect of mechanical activation on the dimensional parameters of aluminosilicate rocks]. Stroitel’nye materialy [Building materials], 2014, v. 10, pp. 28 − 33.
27. Гладкина Н.П., Слепцова С.А., Федосеева В.И., Дьяконов А.А. Влияние модифицированного ионами алюминия диоксида кремния на структуру исвойства композиционных материалов на основе политетрафторэтилена. Высокомолекулярные соединения. Серия А, 2022, т. 64, № 3, с. 179 − 186. / Gladkina N.P., Sleptsova S.A., Fedoseeva V.I., D’yakonov A.A. Effect of silica modified with aluminum ions on the structure and properties of composite materials based on polytetrafluoroethylene. Polymer Science, Series A, 2022, v. 64, no. 3, pp. 187 − 193.
28. Rothon R.N. Particulate-filled polymer composites. iSmithers Rapra Publishing, 2003, 544 p.
29. Кондратюк А.А., Матрёнин, С.В., Недосекова О.Ю. Исследование влияния количества наполнителя на механические характеристики композиционных полимеров. Известия вузов. Физика, 2014, т. 57, № 9-3, с. 98 – 102. / Kondratuk A.A., Matrenin S.V., Nedosekova O.Y. Issledovanie vliyaniya kolichestva napolnitelya na mekhanicheskie harakteristiki kompozicionnyh polimerov [Research of influence of the amount of filler on the mechanical characteristics of composite polymers]. Izvestiya vysshikh uchebnykh zavedeny. Fizika [Russian Physics Journal], 2014, v. 57, no. 9-3, pp. 98 − 102. (In Russ.).
30. Neiman M.B. Aging and stabilization of polymers. Springer Science & Business Media, 2012, 366 p.
31. Паньков В.В., Ивановская М.И., Котиков Д.А. Структура и свойства нанокомпозитов SiO2-Fe2O3. Химические проблемы создания новых материалов и технологий. Минск, Изд. БГУ, 2008, вып. 3, с. 24 − 38. / Pan’kov V.V., Ivanovskaya M.I., Kotikov D.A. Struktura i svojstva nanokompozitov SiO2-Fe2O3 [Structure and properties of SiO2–Fe2O3 nanocomposites]. Himicheskie problemy sozdaniya novyh materialov i tekhnologij [Chemical Problems of the Design of New Materials and Technologies: A Collection of Papers]. Minsk, BGU Publ., 2008, v. 3, pp. 24 − 38. (In Russ.).
32. Tao G., He W., Wang Y., Yu F., Ge J., Yang W Dispersity, mesoporous structure and particle size modulation of hollow mesoporous silica nanoparticles with excellent adsorption performance. Dalton Transactions, 2018, v. 47, no. 38, pp. 13345 − 13352.
33. Sing K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, v. 57, no. 4, pp. 603 − 619.
34. Orolínovaá Z., Mockovčiaková A., Škvarla J. Sorption of cadmium (II) from aqueous solution by magnetic clay composite. Desalination and Water Treatment, 2012, v. 24, no. 1-3, pp. 284 − 292.
35. Lovell E.C., Scott J., Amal R. Ni-SiO2 catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis. Molecules, 2015, v. 20, no. 3, pp. 4594 − 4609.
36. Бельская О.Б., Степанова Л.Н., Леонтьева Н.Н. и др. Формирование платиновых центров на основных носителях типа слоистых двойных гидроксидов. Химия в интересах устойчивого развития, 2013, т. 21, № 1, с. 37 − 46. / Belskaya O.B., Stepanova L.N., Leontyeva N.N. et al. Formation of platinum centers in basic carriers of layered double hydroxide type. Chemistry for Sustainable Development, 2013, v. 21, no. 1, pp. 29 − 38.
37. Kuzharov A.S., Ryadchenko V.G. Realization of the “zero-wear” effect in composite coatings. Industrial & Engineering Chemistry Research, 1993, v. 32, no. 5, pp. 774 − 779.
38. Gupta B.R. Friction and wear mechanism of polymers, their composites and nanocomposites. In book: Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites (Ed. by Soney George, Jozef Haponiuk, Sabu Thomas, et al.). Elsevier, 2023, 502 p. (pp. 51 − 117).
39. Gupta A., Kumar N., Sachdeva A. Factors affecting the ageing of polymer composite: a state of art. Polymer Degradation and Stability, 2024, v. 221, art. 110670.
40. Teutli-Sequeira A., Solache-Ríos M., Balderas-Hernández P. Modification effects of hematite with aluminum hydroxide on the removal of fluoride ions from water. Water, Air, & Soil Pollution, 2012, v. 223, pp. 319 − 327.
41. Новиков Г.И., Романов А.М., Матвеевич В.А. Исследование процесса комплексообразования алюминия с фтором в присутствии анионов различной природы. Химия и химическая технология: республиканский межведомственный сборник, 1983, № 18, с. 59 − 63. / Novikov G.I., Romanov A.M., Matveevich V.A. Issledovanie processa kompleksoobrazovaniya alyuminiya s ftorom v prisutstvii anionov razlichnoj prirody [Study of the process of complex formation of aluminum with fluorine in the presence of anions of various nature]. Himiya i himicheskaya tekhnologiya: respublikanskij mezhvedomstvennyj sbornik [Chemistry and Chemical Technology: Republican Interdepartmental Collection], 1983, no. 18, pp. 59 − 63. (In Russ.).
42. Игнатьева Л.Н., Цветников А.К., Лившиц А.Н. и др. Спектроскопическое исследование модифицированного политетрафторэтилена. Журнал структурной химии, 2002, т. 43, № 1, с. 69 − 73. / Ignatieva L.N., Tsvetnikov A.K., Livshits A.N. et al. Spectroscopic study of modified polytetrafluoroethylene. Journal of Structural Chemistry, 2002, v. 43, pp. 64 − 68.
43. Слепцова С.А., Охлопкова А.А., Капитонова Ю.В. и др. Спектроскопические исследования трибоокислительных процессов модифицированного ПТФЭ. Трение и износ, 2016, т. 37, № 2, с. 168 − 176. / Sleptsova S.A., Okhlopkova A.A., Kapitonova I.V. et al. Spectroscopic study of tribooxidation processes in modified PTFE. Journal of Friction and Wear, 2016, v. 37, pp. 129 − 135.
44. Campbell K.L., Sidebottom M.A., Atkinson C.C. et al. Ultralow wear PTFE-based polymer composites − the role of water and tribochemistry. Macromolecules, 2019, v. 52, no. 14, pp. 5268 − 5277.
45. Krick B.A., Ewin J.J., Blackman G.S. et al. Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribology International, 2012, v. 51, pp. 42 − 46.
46. Khare H.S., Moore A.C., Haidar D.R. et al. Interrelated effects of temperature and environment on wear and tribochemistry of an ultralow wear PTFE composite. The Journal of Physical Chemistry C, 2015, v. 119, no. 29, pp. 16518 − 16527.